Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 114(25): 258101, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26197143

RESUMEN

When animal groups move coherently in the form of a flock, their trajectories are not all parallel, the individuals exchange their position in the group. In this Letter, we introduce a measure of this mixing dynamics, which we quantify as the winding of the braid formed from the particle trajectories. Building on a paradigmatic flocking model we numerically and theoretically explain the winding statistics and show that it is predominantly set by the global twist of the trajectories as a consequence of a spontaneous symmetry breaking.


Asunto(s)
Vuelo Animal , Modelos Teóricos , Animales , Modelos Biológicos
2.
Nat Commun ; 6: 7470, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26088835

RESUMEN

Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries.

3.
Artículo en Inglés | MEDLINE | ID: mdl-25679597

RESUMEN

We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots.


Asunto(s)
Modelos Teóricos , Movimiento (Física) , Robótica , Seguridad
4.
Artículo en Inglés | MEDLINE | ID: mdl-26764636

RESUMEN

We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models.

5.
Eur Phys J E Soft Matter ; 37(6): 13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24965157

RESUMEN

We classify the interactions between self-propelled particles moving at a constant speed from symmetry considerations. We establish a systematic expansion for the two-body forces in the spirit of a multipolar expansion. This formulation makes it possible to rationalize most of the models introduced so far within a common framework. We distinguish between three classes of physical interactions: i) potential forces, ii) inelastic collisions and iii) non-reciprocal interactions involving polar or nematic alignment with an induced field. This framework provides simple design rules for the modeling and the fabrication of self-propelled bodies interacting via physical interactions. A class of possible interactions that should yield new phases of active matter is highlighted.


Asunto(s)
Fenómenos Mecánicos , Modelos Teóricos , Movimiento (Física) , Elasticidad
6.
Phys Rev Lett ; 112(14): 148102, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24766020

RESUMEN

We show that hydrodynamic theories of polar active matter generically possess inhomogeneous traveling solutions. We introduce a unifying dynamical-system framework to establish the shape of these intrinsically nonlinear patterns, and show that they correspond to those hitherto observed in experiments and numerical simulation: periodic density waves, and solitonic bands, or polar-liquid droplets both cruising in isotropic phases. We elucidate their respective multiplicity and mutual relations, as well as their existence domain.


Asunto(s)
Modelos Biológicos , Modelos Químicos , Simulación por Computador , Floculación , Hidrodinámica , Soluciones/química , Conducta Espacial
7.
Nature ; 503(7474): 95-8, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24201282

RESUMEN

From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic 'flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.


Asunto(s)
Coloides , Modelos Teóricos , Movimiento (Física) , Animales , Hidrodinámica , Conducta de Masa , Microesferas , Modelos Biológicos
8.
Phys Rev Lett ; 111(11): 118301, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24074122

RESUMEN

We address the collective dynamics of non-Brownian particles cruising in a confined microfluidic geometry and provide a comprehensive characterization of their spatiotemporal density fluctuations. We show that density excitations freely propagate at all scales, and in all directions even though the particles are neither affected by potential forces nor by inertia. We introduce a kinetic theory which quantitatively accounts for our experimental findings, demonstrating that the fluctuation spectrum of this nonequilibrium system is shaped by the combination of truly long-range hydrodynamic interactions and local collisions. We also demonstrate that the free propagation of density waves is a generic phenomenon which should be observed in a much broader range of hydrodynamic systems.

9.
Phys Rev Lett ; 110(3): 038101, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23373953

RESUMEN

We theoretically describe the dynamics of swimmer populations in rigidly confined thin liquid films. We first demonstrate that hydrodynamic interactions between confined swimmers depend solely on their shape and are independent of their specific swimming mechanism. We also show that, due to friction with the nearby rigid walls, confined swimmers do not just reorient in flow gradients but also in uniform flows. We then quantify the consequences of these microscopic interaction rules on the large-scale hydrodynamics of isotropic populations. We investigate in detail their stability and the resulting phase behavior, highlighting the differences with conventional active, three-dimensional suspensions. Two classes of polar swimmers are distinguished depending on their geometrical polarity. The first class gives rise to coherent directed motion at all scales, whereas for the second class we predict the spontaneous formation of coherent clusters (swarms).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...