Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Front Med (Lausanne) ; 8: 744697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778307

RESUMEN

SARS-CoV2 infection results in a range of symptoms from mild pneumonia to cardiac arrhythmias, hyperactivation of the immune response, systemic organ failure and death. However, the mechanism of action has been hard to establish. Analysis of symptoms associated with COVID-19, the activity of repurposed drugs associated with lower death rates or antiviral activity in vitro and a small number of studies describing interventions, point to the importance of electrolyte, and particularly potassium, homeostasis at both the cellular, and systemic level. Elevated urinary loss of potassium is associated with disease severity, and the response to electrolyte replenishment correlates with progression toward recovery. These findings suggest possible diagnostic opportunities and therapeutic interventions. They provide insights into comorbidities and mechanisms associated with infection by SARS-CoV2 and other RNA viruses that target the ACE2 receptor, and/or activate cytokine-mediated immune responses in a potassium-dependent manner.

3.
Nat Commun ; 11(1): 4706, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943618

RESUMEN

Yeast physiology is temporally regulated, this becomes apparent under nutrient-limited conditions and results in respiratory oscillations (YROs). YROs share features with circadian rhythms and interact with, but are independent of, the cell division cycle. Here, we show that YROs minimise energy expenditure by restricting protein synthesis until sufficient resources are stored, while maintaining osmotic homeostasis and protein quality control. Although nutrient supply is constant, cells sequester and store metabolic resources via increased transport, autophagy and biomolecular condensation. Replete stores trigger increased H+ export which stimulates TORC1 and liberates proteasomes, ribosomes, chaperones and metabolic enzymes from non-membrane bound compartments. This facilitates translational bursting, liquidation of storage carbohydrates, increased ATP turnover, and the export of osmolytes. We propose that dynamic regulation of ion transport and metabolic plasticity are required to maintain osmotic and protein homeostasis during remodelling of eukaryotic proteomes, and that bioenergetic constraints selected for temporal organisation that promotes oscillatory behaviour.


Asunto(s)
Metabolismo Energético/fisiología , Células Eucariotas/fisiología , Proteostasis/fisiología , Autofagia/fisiología , Reactores Biológicos , Ritmo Circadiano , Glucógeno/metabolismo , Respuesta al Choque Térmico , Ionomicina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metabolómica , Chaperonas Moleculares , Concentración Osmolar , Presión Osmótica , Oxígeno/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteoma , Proteómica , Ribosomas , Levaduras/fisiología
4.
Eur J Neurosci ; 51(1): 1-12, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30548718

RESUMEN

Circadian clocks are widespread among eukaryotes and generally involve feedback loops coupled with metabolic processes and redox balance. The organising power of these oscillations has not only allowed organisms to anticipate day-night cycles, but also acts to temporally compartmentalise otherwise incompatible processes, enhance metabolic efficiency, make the system more robust to noise and propagate signals among cells. While daily rhythms and the function of the circadian transcription-translation loop have been the subject of extensive research over the past four decades, cycles of shorter period and respiratory oscillations, with which they are intertwined, have received less attention. Here, we describe features of yeast respiratory oscillations, which share many features with daily and 12 hr cellular oscillations in animal cells. This relatively simple system enables the analysis of dynamic rhythmic changes in metabolism, independent of cellular oscillations that are a product of the circadian transcription-translation feedback loop. Knowledge gained from studying ultradian oscillations in yeast will lead to a better understanding of the basic mechanistic principles and evolutionary origins of oscillatory behaviour among eukaryotes.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Oxidación-Reducción
5.
Curr Opin Syst Biol ; 2: 98-102, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28691107

RESUMEN

Over the past decade, a number of methods have emerged for inferring protein-level transcription factor activities in individual samples based on prior information about the structure of the gene regulatory network. We discuss how this has enabled new methods for dissecting trans-acting mechanisms that underpin genetic variation in gene expression.

6.
Proc Natl Acad Sci U S A ; 113(13): E1835-43, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26966232

RESUMEN

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


Asunto(s)
Redes Reguladoras de Genes , Sitios de Carácter Cuantitativo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Algoritmos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Genes del Tipo Sexual de los Hongos/genética , Modelos Genéticos , Mutación , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
7.
Curr Biol ; 25(8): 1056-62, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25866393

RESUMEN

Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock.


Asunto(s)
Proteínas CLOCK/metabolismo , Quinasa de la Caseína I/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Filogenia , Animales , Quinasa de la Caseína I/genética , División Celular/genética , Glucógeno Sintasa Quinasa 3/genética , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Fosforilación , Levaduras
8.
G3 (Bethesda) ; 4(8): 1539-53, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24938291

RESUMEN

Understanding how genomic variation influences phenotypic variation through the molecular networks of the cell is one of the central challenges of biology. Transcriptional regulation has received much attention, but equally important is the posttranscriptional regulation of mRNA stability. Here we applied a systems genetics approach to dissect posttranscriptional regulatory networks in the budding yeast Saccharomyces cerevisiae. Quantitative sequence-to-affinity models were built from high-throughput in vivo RNA binding protein (RBP) binding data for 15 yeast RBPs. Integration of these models with genome-wide mRNA expression data allowed us to estimate protein-level RBP regulatory activity for individual segregants from a genetic cross between two yeast strains. Treating these activities as a quantitative trait, we mapped trans-acting loci (activity quantitative trait loci, or aQTLs) that act via posttranscriptional regulation of transcript stability. We predicted and experimentally confirmed that a coding polymorphism at the IRA2 locus modulates Puf4p activity. Our results also indicate that Puf3p activity is modulated by distinct loci, depending on whether it acts via the 5' or the 3' untranslated region of its target mRNAs. Together, our results validate a general strategy for dissecting the connectivity between posttranscriptional [corrected] regulators and their upstream signaling pathways.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica , Variación Genética , Sitios de Carácter Cuantitativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
BMC Res Notes ; 3: 349, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21189145

RESUMEN

BACKGROUND: The maturing of gene expression microarray technology and interest in the use of microarray-based applications for clinical and diagnostic applications calls for quantitative measures of quality. This manuscript presents a retrospective study characterizing several approaches to assess technical performance of microarray data measured on the Affymetrix GeneChip platform, including whole-array metrics and information from a standard mixture of external spike-in and endogenous internal controls. Spike-in controls were found to carry the same information about technical performance as whole-array metrics and endogenous "housekeeping" genes. These results support the use of spike-in controls as general tools for performance assessment across time, experimenters and array batches, suggesting that they have potential for comparison of microarray data generated across species using different technologies. RESULTS: A layered PCA modeling methodology that uses data from a number of classes of controls (spike-in hybridization, spike-in polyA+, internal RNA degradation, endogenous or "housekeeping genes") was used for the assessment of microarray data quality. The controls provide information on multiple stages of the experimental protocol (e.g., hybridization, RNA amplification). External spike-in, hybridization and RNA labeling controls provide information related to both assay and hybridization performance whereas internal endogenous controls provide quality information on the biological sample. We find that the variance of the data generated from the external and internal controls carries critical information about technical performance; the PCA dissection of this variance is consistent with whole-array quality assessment based on a number of quality assurance/quality control (QA/QC) metrics. CONCLUSIONS: These results provide support for the use of both external and internal RNA control data to assess the technical quality of microarray experiments. The observed consistency amongst the information carried by internal and external controls and whole-array quality measures offers promise for rationally-designed control standards for routine performance monitoring of multiplexed measurement platforms.

10.
Cell ; 143(6): 1005-17, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21129771

RESUMEN

Systematic characterization of cancer genomes has revealed a staggering number of diverse aberrations that differ among individuals, such that the functional importance and physiological impact of most tumor genetic alterations remain poorly defined. We developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma data set. Our analysis correctly identified known drivers of melanoma and predicted multiple tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify candidate drivers with biological, and possibly therapeutic, importance in cancer.


Asunto(s)
Teorema de Bayes , Proteínas Activadoras de GTPasa/metabolismo , Melanoma/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas Activadoras de GTPasa/genética , Perfilación de la Expresión Génica , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética , Proteínas rab27 de Unión a GTP
11.
Mol Syst Biol ; 5: 310, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19888205

RESUMEN

The advent of cost-effective genotyping and sequencing methods have recently made it possible to ask questions that address the genetic basis of phenotypic diversity and how natural variants interact with the environment. We developed Camelot (CAusal Modelling with Expression Linkage for cOmplex Traits), a statistical method that integrates genotype, gene expression and phenotype data to automatically build models that both predict complex quantitative phenotypes and identify genes that actively influence these traits. Camelot integrates genotype and gene expression data, both generated under a reference condition, to predict the response to entirely different conditions. We systematically applied our algorithm to data generated from a collection of yeast segregants, using genotype and gene expression data generated under drug-free conditions to predict the response to 94 drugs and experimentally confirmed 14 novel gene-drug interactions. Our approach is robust, applicable to other phenotypes and species, and has potential for applications in personalized medicine, for example, in predicting how an individual will respond to a previously unseen drug.


Asunto(s)
Farmacorresistencia Fúngica/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Saccharomyces cerevisiae/genética , Algoritmos , Antifúngicos/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple/genética , Retroalimentación Fisiológica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Genotipo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(16): 6441-6, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19223586

RESUMEN

Understanding the effect of genetic sequence variation on phenotype is a major challenge that lies at the heart of genetics. We developed GOLPH (GenOmic Linkage to PHenotype), a statistical method to identify genetic interactions, and used it to characterize the landscape of genetic interactions between gene expression quantitative trait loci. Our results reveal that allele-specific interactions, in which a gene only exerts an influence on the phenotype in the presence of a particular allele at the primary locus, are widespread and that genetic interactions are predominantly nonadditive. The data portray a complex picture in which interacting loci influence the expression of modules of coexpressed genes involved in coherent biological processes and pathways. We show that genetic variation at a single gene can have a major impact on the global transcriptional response, altering interactions between genes through shutdown or activation of pathways. Thus, different cellular states occur not only in response to the external environment but also result from intrinsic genetic variation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Algoritmos , Alelos , Ligamiento Genético , Genoma Fúngico/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética
13.
Nat Biotechnol ; 26(3): 305-12, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18327244

RESUMEN

One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.


Asunto(s)
Inmunohistoquímica/normas , Hibridación in Situ/normas , Biología Computacional/métodos , Biología Computacional/normas , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Inmunohistoquímica/métodos , Hibridación in Situ/métodos
14.
BMC Bioinformatics ; 7: 489, 2006 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-17087822

RESUMEN

BACKGROUND: Sharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support. RESULTS: We propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion. CONCLUSION: MAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML.


Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Bases de Datos Genéticas , Humanos
15.
OMICS ; 10(2): 199-204, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16901226

RESUMEN

The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the "semantic glue" to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans.


Asunto(s)
Investigación Biomédica/normas , Genómica/normas , Investigación Biomédica/organización & administración , Genómica/organización & administración , Terminología como Asunto , Recursos Humanos
16.
OMICS ; 10(2): 205-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16901227

RESUMEN

We describe the creation process of the Minimum Information Specification for In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE). Modeled after the existing minimum information specification for microarray data, we created a new specification for gene expression localization experiments, initially to facilitate data sharing within a consortium. After successful use within the consortium, the specification was circulated to members of the wider biomedical research community for comment and refinement. After a period of acquiring many new suggested requirements, it was necessary to enter a final phase of excluding those requirements that were deemed inappropriate as a minimum requirement for all experiments. The full specification will soon be published as a version 1.0 proposal to the community, upon which a more full discussion must take place so that the final specification may be achieved with the involvement of the whole community.


Asunto(s)
Biología Computacional/normas , Inmunohistoquímica/normas , Hibridación in Situ/normas , Biología Computacional/métodos , Inmunohistoquímica/métodos , Hibridación in Situ/métodos
18.
Bioinformatics ; 22(7): 866-73, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16428806

RESUMEN

MOTIVATION: The generation of large amounts of microarray data and the need to share these data bring challenges for both data management and annotation and highlights the need for standards. MIAME specifies the minimum information needed to describe a microarray experiment and the Microarray Gene Expression Object Model (MAGE-OM) and resulting MAGE-ML provide a mechanism to standardize data representation for data exchange, however a common terminology for data annotation is needed to support these standards. RESULTS: Here we describe the MGED Ontology (MO) developed by the Ontology Working Group of the Microarray Gene Expression Data (MGED) Society. The MO provides terms for annotating all aspects of a microarray experiment from the design of the experiment and array layout, through to the preparation of the biological sample and the protocols used to hybridize the RNA and analyze the data. The MO was developed to provide terms for annotating experiments in line with the MIAME guidelines, i.e. to provide the semantics to describe a microarray experiment according to the concepts specified in MIAME. The MO does not attempt to incorporate terms from existing ontologies, e.g. those that deal with anatomical parts or developmental stages terms, but provides a framework to reference terms in other ontologies and therefore facilitates the use of ontologies in microarray data annotation. AVAILABILITY: The MGED Ontology version.1.2.0 is available as a file in both DAML and OWL formats at http://mged.sourceforge.net/ontologies/index.php. Release notes and annotation examples are provided. The MO is also provided via the NCICB's Enterprise Vocabulary System (http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do). CONTACT: Stoeckrt@pcbi.upenn.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Simulación por Computador , Sistemas de Administración de Bases de Datos , Almacenamiento y Recuperación de la Información/métodos , Modelos Biológicos , Lenguajes de Programación , Interfaz Usuario-Computador
19.
BMC Bioinformatics ; 6: 268, 2005 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-16280078

RESUMEN

BACKGROUND: The generation of large amounts of microarray data presents challenges for data collection, annotation, exchange and analysis. Although there are now widely accepted formats, minimum standards for data content and ontologies for microarray data, only a few groups are using them together to build and populate large-scale databases. Structured environments for data management are crucial for making full use of these data. DESCRIPTION: The MiMiR database provides a comprehensive infrastructure for microarray data annotation, storage and exchange and is based on the MAGE format. MiMiR is MIAME-supportive, customised for use with data generated on the Affymetrix platform and includes a tool for data annotation using ontologies. Detailed information on the experiment, methods, reagents and signal intensity data can be captured in a systematic format. Reports screens permit the user to query the database, to view annotation on individual experiments and provide summary statistics. MiMiR has tools for automatic upload of the data from the microarray scanner and export to databases using MAGE-ML. CONCLUSION: MiMiR facilitates microarray data management, annotation and exchange, in line with international guidelines. The database is valuable for underpinning research activities and promotes a systematic approach to data handling. Copies of MiMiR are freely available to academic groups under licence.


Asunto(s)
Interpretación Estadística de Datos , Bases de Datos Genéticas , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Recolección de Datos , Presentación de Datos , Interfaz Usuario-Computador
20.
Nat Methods ; 2(10): 731-4, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16179916

RESUMEN

Standard controls and best practice guidelines advance acceptance of data from research, preclinical and clinical laboratories by providing a means for evaluating data quality. The External RNA Controls Consortium (ERCC) is developing commonly agreed-upon and tested controls for use in expression assays, a true industry-wide standard control.


Asunto(s)
Perfilación de la Expresión Génica/normas , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , ARN Mensajero/análisis , Animales , Guías como Asunto , Humanos , Ratones , Control de Calidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...