RESUMEN
Aquatic contamination by potentially toxic metals is a problem that has been aggravated, especially due to the quantity and the diversity of sources. Locating these sources is not always an easy task, especially because of the wide variety of possibilities. In this context, the application of geostatistical methods may represent an excellent tool to find out sources of metal contaminants in aquatic systems. Thus, the objective of this work was to elaborate an approach to identify sources of potentially toxic metals (Zn, Ba, Pb, Cr, Mn and Fe), by relating their spatial-temporal variations with the local land use patterns, along a longitudinal profile of the Pirapora River, located in the State of Sao Paulo, Brazil. For this purpose, water samples were collected at different points, taking into consideration each specific land use pattern and quantifying the metals contents by microwave plasma atomic emission spectrometry. In this work, thirteen land use patterns have been identified: mining, forestry, abandoned pasture, water, urban area, human occupation, floodplain, bare soil, temporary crop, roads, forest, streets and pasture. The results revealed temporal variations for the metals Ba, Cr, Fe, and Pb and spatial for Zn and Mn, making possible to correlate the presence of these two latter metals with mining and forestry, the most proeminent activities in the region. Overall, this work proposes a model which brings together geoprocessing and analytical methods, in order to correlate spatial-temporal variations of potentially toxic metals with specific land use patterns of a determined region, aiming the environmental monitoring.
Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Agricultura , Brasil , Bosques , Humanos , Metales Pesados/toxicidad , Minería , Ríos , Suelo/química , Análisis Espacio-Temporal , Contaminantes Químicos del Agua/toxicidadRESUMEN
In this work we examined the effect of urea and guanidinium chloride on the structural stability of a single isoform of soybean seed acid phosphatase, based on the intensity of tryptophan fluorescence as a function of denaturant concentration. The free energy of unfolding, DeltaGu, was calculated at 25 degrees C as a function of the concentrations of both chaotropic agents; the conformational stability, DeltaG (H2O), was determined to be 2.48 kcal mol(-1). Center of mass, determined from analysis of fluorescence data, was used as a parameter to assess conformational changes. Our results indicate that complete enzyme inactivation occurred before full enzyme unfolding in both cases, and suggest that there are differences between the conformational flexibility of the active-site and that of the macromolecule as a whole.
Asunto(s)
Fosfatasa Ácida/química , Glycine max/enzimología , Guanidina/química , Urea/química , Fosfatasa Ácida/metabolismo , Desnaturalización Proteica , Pliegue de Proteína , Semillas/enzimología , Espectrometría de Fluorescencia , TermodinámicaRESUMEN
The effect of temperature on the activity and structural stability of an acid phosphatase (EC 3.1.3.2.) purified from castor bean (Ricinus communis L.) seeds have been examined. The enzyme showed high activity at 45 degrees C using p-nitrophenylphosphate (p-NPP) as substrate. The activation energy for the catalyzed reaction was 55.2 kJ mol(-1) and the enzyme maintained 50% of its activity even after 30 min at 55 degrees C. Thermal inactivation studies showed an influence of pH in the loss of enzymatic activity at 60 degrees C. A noticeable protective effect from thermal inactivation was observed when the enzyme was preincubated, at 60 degrees C, with the reaction products inorganic phosphate-P (10 mM) and p-nitrophenol-p-NP(10 mM). Denaturation studies showed a relatively high transition temperature (Tm) value of 75 degrees C and an influence of the combination of Pi (10 mM) and p-NP (10 mM) was observed on the conformational behaviour of the macromolecule.