Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998971

RESUMEN

This study was carried out to investigate the continuous aqueous pretreatment of sugarcane bagasse (SCB) through twin-screw extrusion for a new integrated full valorization, where the solid residue (extrudate) was used for the production of bio-based materials by thermocompression and the filtrate for the production of high-value-added molecules. Two configurations, with and without a filtration module, were tested and the influence of the SCB composition and structure on the properties of the materials were determined. The impact of the liquid-to-solid (L/S) ratio was studied (0.65-6.00) in relation to the material properties and the biomolecule extraction yield in the filtrate (with the filtration configuration). An L/S ratio of at least 1.25 was required to obtain a liquid filtrate, and increasing the L/S ratio to 2 increased the extraction yield to 11.5 g/kg of the inlet SCB. The extrudate obtained without filtration yielded materials with properties equivalent to those obtained with filtration for L/S ratios of at least 1.25. Since the molecule extraction process was limited, a configuration without filtration would make it possible to reduce water consumption in the process while obtaining high material properties. Under the filtration configuration, an L/S ratio of 2 was the best tradeoff between water consumption, extraction yield, and the material properties, which included 1485 kg/m3 density, 6.2 GPa flexural modulus, 51.2 MPa flexural strength, and a water absorption (WA) and thickness swelling (TS) of 37% and 44%, respectively, after 24 h of water immersion. The aqueous pretreatment by twin-screw extrusion allowed for the overall valorization of SCB, resulting in materials with significantly improved properties compared to those obtained with raw SCB due to fiber deconstruction.

2.
Materials (Basel) ; 17(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673071

RESUMEN

The aim of this study was to assess the influence of thermocompression conditions on lignocellulosic biomasses such as sugarcane bagasse (SCB) in the production of 100% binderless bio-based materials. Five parameters were investigated: pressure applied (7-102 MPa), molding temperature (60-240 °C), molding time (5-30 min), fiber/fine-particle ratio (0/100-100/0) and moisture content (0-20%). These parameters affected the properties and chemical composition of the materials. The density ranged from 1198 to 1507 kg/m3, the flexural modulus from 0.9 to 6.9 GPa and the flexural strength at breaking point from 6.1 to 43.6 MPa. Water absorption (WA) and thickness swelling (TS) values ranged from 21% to 240% and from 9% to 208%, respectively. Higher mechanical properties were obtained using SCB with fine particles, low moisture content (4-10%) and high temperature (≥200 °C) and pressure (≥68 MPa), while water resistance was improved using more severe thermocompression conditions with the highest temperature (240 °C) and time (30 min) or a higher moisture content (≥12.5%). Correlations were noted between the mechanical properties and density, and the material obtained with only fine particles had the highest mechanical properties and density. Material obtained with a 30 min molding time had the lowest WA and TS due to internal chemical reorganization followed by hemicellulose hydrolysis into water-soluble extractables.

3.
Inorg Chem ; 61(39): 15432-15443, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36122188

RESUMEN

In the present work, a series of CaTi1-xFexO3-δ (0 < x < 0.5) materials are prepared using a modified Pechini method based on citric acid and a polyol as chelating agents. The synthesis conditions are optimized with respect to the specific surface area and phase purity by varying polyols (ethylene glycol, glycerol, and 1.6-hexanediol) and the ratio between citric acid, polyols, and cations. The impact of the polyols and the iron content (up to 40 mol % on the B site) is studied with respect to the oxygen exchange rate, reducibility using H2-TPR, and catalytic performance for methane total oxidation. A correlation between the oxygen exchange rate studied using 18O exchange in powdered samples of CaTi1-xFexO3-δ (0 < x < 0.5) and ferric sites determined using Mössbauer spectroscopy and H2-TPR is established. The oxygen activation and diffusion in CaTi1-xFexO3-δ (0 < x < 0.5) continuously increase in the studied range of Ti substitution. The methane oxidation performance does not increase above x = 0.3, showing that methane oxidation is not limited by surface oxygen activation and CH4 is activated by specific iron sites in Fe-doped perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA