Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; : e202300616, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305754

RESUMEN

Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri, is one of the main threats to citrus fruit production. Several phenolic compounds active against X. citri have been described in recent years. Benzene-1,2,4-triol is a bio-based phenolic compound that has shown high potential as a scaffold for the synthesis of new anti-X. citri compounds. However, benzene-1,2,4-triol is prone to oxidative dimerization. We evaluated the antibacterial activity of benzene-1,2,4-triol, its oxidized dimers, and analogous compounds. Benzene-1,2,4-triol has a low inhibitory concentration against X. citri (0.05 mM) and is also active against other bacterial species. Spontaneous formation of benzenetriol dimers (e. g. by contact with oxygen in aqueous solution) reduced the antimicrobial activity of benzenetriol solutions. Dimers themselves displayed lower antibacterial activity and where shown to be more stable in solution. Unlike many other phenolic compounds with anti-X. citri activity, benzene-1,2,4-triol does not act by membrane permeabilization, but seems to limit the availability of iron to cells. Benzene-1,2,4-triol is widely recognized as toxic - our results indicate that the toxicity of benzene-1,2,4-triol is largely due to spontaneously formed dimers. Stabilization of benzene-1,2,4-triol will be required to allow the safe use of this compound.

2.
Bioorg Chem ; 109: 104668, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33601139

RESUMEN

Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Bacillus subtilis/efectos de los fármacos , Línea Celular , Curcumina/química , Diseño de Fármacos , Desarrollo de Medicamentos , Humanos , Pulmón/citología , Estructura Molecular
3.
Molecules ; 25(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050236

RESUMEN

Xanthomonas citri subsp. citri (X. citri) is an important phytopathogen and causes Asiatic Citrus Canker (ACC). To control ACC, copper sprays are commonly used. As copper is an environmentally damaging heavy metal, new antimicrobials are needed to combat citrus canker. Here, we explored the antimicrobial activity of chalcones, specifically the methoxychalcone BC1 and the hydroxychalcone T9A, against X. citri and the model organism Bacillus subtilis. BC1 and T9A prevented growth of X. citri and B. subtilis in concentrations varying from 20 µg/mL to 40 µg/mL. BC1 and T9A decreased incorporation of radiolabeled precursors of DNA, RNA, protein, and peptidoglycan in X. citri and B. subtilis. Both compounds mildly affected respiratory activity in X. citri, but T9A strongly decreased respiratory activity in B. subtilis. In line with that finding, intracellular ATP decreased strongly in B. subtilis upon T9A treatment, whereas BC1 increased intracellular ATP. In X. citri, both compounds resulted in a decrease in intracellular ATP. Cell division seems not to be affected in X. citri, and, although in B. subtilis the formation of FtsZ-rings is affected, a FtsZ GTPase activity assay suggests that this is an indirect effect. The chalcones studied here represent a sustainable alternative to copper for the control of ACC, and further studies are ongoing to elucidate their precise modes of action.


Asunto(s)
Antibacterianos/farmacología , Chalconas/farmacología , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/patogenicidad , Chalconas/química
4.
Microbiologyopen ; 9(9): e1104, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32761800

RESUMEN

Brazil is the biggest producer of sweet oranges and the main exporter of concentrated orange juice in the world. Among the diseases that affect citriculture, Asiatic citrus canker, caused by the bacterial pathogen Xanthomonas citri, represents one of the most significant threats. The current Brazilian legislation regulating the control of citrus canker no longer requires the eradication of affected trees in states where the incidence of the disease is high. Instead, control involves disease control measures, including periodic preventative spraying of copper compounds. The long-term use of copper for plant disease control has raised concerns about environmental accumulation and toxicity, as well as the selective pressure it exerts leading to the emergence of copper-resistant X. citri strains. Here, we evaluated hexyl gallate (G6) as an alternative to copper compounds for citrus plant protection. G6 was able to protect citrus nursery trees against X. citri infection. Thirty days after inoculation, the trees treated with G6 developed 0.5 lesions/cm2 leaf area compared with the 2.84 lesions/cm2 observed in the untreated control trees. Also, G6 did not interfere with germination and root development of tomato, lettuce, and arugula, which is consistent with our previous data showing that G6 is safe for tissue culture cell lines. Membrane permeability tests showed that the primary target of G6 is the bacterial outer membrane. Finally, we could not isolate spontaneous X. citri mutants resistant to G6 nor induce resistance to G6 after long-term exposures to increasing concentrations of the compound, which suggests that G6 may have multiple cellular targets. This study demonstrated that G6 is a promising candidate for the development and use in citrus canker management.


Asunto(s)
Citrus sinensis/microbiología , Enfermedades de las Plantas/prevención & control , Xanthomonas/efectos de los fármacos , Brasil , Permeabilidad de la Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana , Germinación/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Xanthomonas/fisiología
5.
Bioorg Chem ; 90: 103031, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31238181

RESUMEN

Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.


Asunto(s)
Antituberculosos/farmacología , Membrana Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Antituberculosos/síntesis química , Antituberculosos/toxicidad , Bacterias/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Línea Celular Tumoral , Curcumina/toxicidad , Proteínas del Citoesqueleto/antagonistas & inhibidores , ADN/efectos de los fármacos , Estabilidad de Medicamentos , GTP Fosfohidrolasas/antagonistas & inhibidores , Humanos , Pruebas de Sensibilidad Microbiana
6.
Microbiologyopen ; 8(4): e00683, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30051597

RESUMEN

Curcumin is the main constituent of turmeric, a seasoning popularized around the world with Indian cuisine. Among the benefits attributed to curcumin are anti-inflammatory, antimicrobial, antitumoral, and chemopreventive effects. Besides, curcumin inhibits the growth of the gram-positive bacterium Bacillus subtilis. The anti-B. subtilis action happens by interference with the division protein FtsZ, an ancestral tubulin widespread in Bacteria. FtsZ forms protofilaments in a GTP-dependent manner, with the concomitant recruitment of essential factors to operate cell division. By stimulating the GTPase activity of FtsZ, curcumin destabilizes its function. Recently, curcumin was shown to promote membrane permeabilization in B. subtilis. Here, we used molecular simplification to dissect the functionalities of curcumin. A simplified form, in which a monocarbonyl group substituted the ß-diketone moiety, showed antibacterial action against gram-positive and gram-negative bacteria of clinical interest. The simplified curcumin also disrupted the divisional septum of B. subtilis; however, subsequent biochemical analysis did not support a direct action on FtsZ. Our results suggest that the simplified curcumin exerted its function mainly through membrane permeabilization, with disruption of the membrane potential necessary for FtsZ intra-cellular localization. Finally, we show here experimental evidence for the requirement of the ß-diketone group of curcumin for its interaction with FtsZ.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Curcumina/farmacología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Pruebas de Sensibilidad Microbiana
7.
Plasmid ; 90: 44-52, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28343961

RESUMEN

Xanthomonas citri subsp. citri (X. citri) is a plant pathogen and the etiological agent of citrus canker, a severe disease that affects all the commercially important citrus varieties, and has worldwide distribution. Citrus canker cannot be healed, and the best method known to control the spread of X. citri in the orchards is the eradication of symptomatic and asymptomatic plants in the field. However, in the state of São Paulo, Brazil, the main orange producing area in the world, control is evolving to an integrated management system (IMS) in which growers have to use less susceptible plants, windshields to prevent bacterial spread out and sprays of cupric bactericidal formulations. Our group has recently proposed alternative methods to control citrus canker, which are based on the use of chemical compounds able to disrupt vital cellular processes of X. citri. An important step in this approach is the genetic and biochemical characterization of genes/proteins that are the possible targets to be perturbed, a task not always simple when the gene/protein under investigation is essential for the organism. Here, we describe vectors carrying the arabinose promoter that enable controllable protein expression in X. citri. These vectors were used as complementation tools for the clean deletion of parB in X. citri, a widespread and conserved gene involved in the essential process of bacterial chromosome segregation. Overexpression or depletion of ParB led to increased cell size, which is probably a resultant of delayed chromosome segregation with subsequent retard of cell division. However, ParB is not essential in X. citri, and in its absence the bacterium was fully competent to colonize the host citrus and cause disease. The arabinose expression vectors described here are valuable tools for protein expression, and especially, to assist in the deletion of essential genes in X. citri.


Asunto(s)
Proteínas Bacterianas/genética , Citrus/microbiología , ADN Primasa/deficiencia , Enfermedades de las Plantas/microbiología , Plásmidos/metabolismo , Xanthomonas/patogenicidad , Arabinosa/genética , Arabinosa/metabolismo , Proteínas Bacterianas/metabolismo , División Celular , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/ultraestructura , Clonación Molecular , ADN Primasa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Hojas de la Planta/microbiología , Plásmidos/química , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virulencia , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...