Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrition ; 85: 111087, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545543

RESUMEN

OBJECTIVE: Vitamin A is commonly recommended as a treatment for diarrhea and undernutrition; however, little is known about the underlying cellular mechanisms. The aim of this study was to investigate the modulation of cell cycle by vitamin A derivatives (retinyl palmitate or retinol) in undernourished intestinal epithelial crypts (IEC-6). METHODS: IEC-6 cells were exposed to nutrient deprivation (no serum and no glutamine) and supplemented with retinyl palmitate or retinol at a range of 2 to 20 µM. Proliferation, apoptosis/necrosis, cell cycle process, and gene transcription were assessed. RESULTS: Nutrient deprivation for 6, 12, 24, or 48 h decreased cell proliferation, and retinyl palmitate further decreased it after 24 and 48 h. Apoptosis rates were reduced by undernourishment and further reduced by retinyl palmitate after 48 h; whereas necrosis rates were unaltered. Undernourishment induced overall cell quiescence, increased percentage of cells in G0/G1 phase and decreased percentage of cells in S phase after 12 h and in G2/M phases at 6, 12, and 24 h after treatment. Both retinoids also showed cell quiescence induction with less cells in G2/M phases after 48 h, whereas only retinol showed significant modulation of G0/G1 and S phases. Both retinoids also increased markers of cell differentiation Fabp and Iap gene transcriptions in about fivefold rates after 42 h. Furthermore, specific gene transcriptions related to MAP kinase signaling pathway regulation of cell differentiation and cell cycle regulation were triggered by retinoids in undernourished IEC-6, with higher levels of expression for Atf2 and C-jun genes. CONCLUSIONS: These findings indicated that both vitamin A derivatives induce further survival mechanisms in undernourished intestinal epithelial crypt cells. These mechanisms include increased cell quiescence, decreased apoptosis, increased cell differentiation, and transcription of genes related to MAP kinase signaling pathway.


Asunto(s)
Retinoides , Vitamina A , Ciclo Celular , Diferenciación Celular , División Celular , Células Epiteliales , Nutrientes , Retinoides/farmacología , Vitamina A/farmacología
2.
Infect Immun ; 88(7)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32341117

RESUMEN

Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 µM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Catelicidinas/farmacología , Mastitis/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Animales , Biopsia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Epitelio , Femenino , Inmunohistoquímica , Glándulas Mamarias Animales , Ratones , Ratones Noqueados
3.
Artículo en Inglés | MEDLINE | ID: mdl-32117805

RESUMEN

Prototheca bovis (formerly P. zopfii genotype-II) is an opportunistic, achlorophyllous alga that causes mastitis in cows and skin disease in cats and dogs, as well as cutaneous lesions in both immunocompetent and immunosuppressed humans. Antifungal medications are commonly ineffective. This study aimed to investigate innate immune responses contributed by cathelicidins to P. bovis in the mammary gland using a mastitis model in mice deficient in the sole murine cathelicidin (Camp). We determined P. bovis caused acute mastitis in mice and induced Camp gene transcription. Whereas, Camp-/- and Camp+/+ littermates had similar local algae burden, Camp+/+ mice produced more pro-inflammatory cytokines, TNF-α, and Cxcl-1. Likewise, Camp+/+ bone marrow-derived macrophages were more responsive to P. bovis, producing more TNF-α and Cxcl-1. Human cathelicidin (LL-37) exhibited a different effect against P. bovis; it had direct algicidal activity against P. bovis and lowered TNF-α, Cxcl-1, and IL-1ß production in both cultured murine macrophages and mammary epithelial cells exposed to the pathogenic algae. In conclusion, cathelicidins were involved in protothecosis pathogenesis, with unique roles among the diverse peptide family. Whereas, endogenous cathelicidin (Camp) was key in mammary gland innate defense against P. bovis, human LL-37 had algicidal and immunomodulatory functions.


Asunto(s)
Mastitis Bovina , Mastitis , Prototheca , Animales , Catelicidinas , Gatos , Bovinos , Perros , Femenino , Humanos , Ratones , Enfermedades Cutáneas Infecciosas
4.
Int J Antimicrob Agents ; 51(6): 813-821, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29476808

RESUMEN

Cathelicidins are a primitive class of host defense peptides and are known for their broad-spectrum antimicrobial activity against bacteria, fungi, and enveloped viruses. These small, cationic, proteolytically-activated peptides are diverse in structure, encompassing a wide range of activities on host immune and inflammatory cell responses. The dual capacity of cathelicidins to directly control infection and regulate host defenses highlights the potential use of these peptides as alternatives to antibiotics and immunomodulators. Cathelicidins are found in many mammalian species; this review focuses on bovine cathelicidins. Eight naturally and two synthetically occurring bovine cathelicidins are described in detail, with a focus on recent advances in their expression, location and biological roles. This review also presents an overview of the bioactive functions of cathelicidins in bovine mastitis, a disease causing economic losses in cattle dairy production. Comparison of the structural, antimicrobial, cytotoxic and mechanistic properties of bovine cathelicidins advances the knowledge needed for the development of these peptides as potential identifiers of infectious diseases (e.g., bovine mastitis) and as novel therapeutic alternatives to antibiotics.


Asunto(s)
Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Catelicidinas/metabolismo , Mastitis Bovina/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/biosíntesis , Bacterias/inmunología , Catelicidinas/biosíntesis , Bovinos , Femenino , Hongos/inmunología , Mastitis Bovina/microbiología , Virus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...