Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(4): e15312, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37151670

RESUMEN

Objectives: Micromotion between a dental implant and abutment can adversely affect clinical performance and compromise successful osseointegration by creating a bacterial harbor, enabling screw loosening, and imparting disruptive lateral forces on the cortical bone. Thus, the aim of the present study was to measure the abutment stability evolution using resonance frequency analysis (RFA) in vivo at four different times (baseline, 3, 4, and 12 months), and compare these data obtained with the RFA measured after mechanical cycling (in vitro) corresponding to the proposed times in numbers of cycles. Methods: To evaluate the abutment stability, RFA was performed in 70 sets of implant/abutment (IA) with a total of 54 patients (31 women, 23 men). These IA sets were divided into three groups, according to the abutment angulation: straight abutment (Abt1 group), 17-degree angled abutment (Abt2 group), and 30-degree angled abutment (Abt3 group). Abutment stability was measured immediately at implant placement and the abutment installation (T1), 3 (T2), 4 (T3), and 12 months (T4) later. For the in vitro analysis, ten sets of each group were submitted to mechanical cycling: T1 = 0 cycles, T2 = 90,000 cycles, T3 = 120,000 cycles, and T4 = 360,000 cycles. All data collected were statistically evaluated using the GraphPad Prism 5.01 software, with the level of significance was α = 0.05. Results: In vivo, the overall data of implant stability quotient (ISQ) values obtained for all groups in each evaluation time were 61.5 ± 3.94 (95% CI: [60-63]) at T1, 62.8 ± 3.73 (95% CI, [61-64]) at T2, 63.4 ± 3.08 (95% CI: [61-64]) at T3, and 65.5 ± 4.33 (95% CI: [63-68]) at T4. Whereas in vitro, the ISQ were 61.5 ± 2.66 (95% CI: [59-63]) at T1, 63.2 ± 3.02 (95% CI, [61-65]) at T2, 63.9 ± 2.55 (95% CI: [62-66]) at T3, and 66.5 ± 2.97 (95% CI: [64-68]) at T4. In both evaluations (in vivo and in vitro), the data showed a significant difference (ANOVA test with p < 0.0001). Conclusions: The RFA to measure the abutment stability used in this study showed that there was a progressive increase in stability among the predetermined times for the measurements, in both analysis (in vivo and in vitro). Furthermore, the values at each time point were similar, with no statistical difference between them.

2.
Materials (Basel) ; 12(8)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010110

RESUMEN

The physical characteristics of an implant surface can determine and/or facilitate osseointegration processes. In this sense, a new implant surface with microgrooves associated with plus double acid treatment to generate roughness was evaluated and compared in vitro and in vivo with a non-treated (smooth) and double acid surface treatment. Thirty disks and thirty-six conical implants manufactured from commercially pure titanium (grade IV) were prepared for this study. Three groups were determined, as described below: Group 1 (G1), where the samples were only machined; group 2 (G2), where the samples were machined and had their surface treated to generate roughness; and test group 3 (G3), where the samples were machined with microgrooves and the surface was treated to generate the roughness. For the in vitro analysis, the samples were submitted to scanning microscopy (SEM), surface profilometry, the atomic force microscope (MFA) and the surface energy test. For the in vivo analyses, thirty-six implants were placed in the tibia of 9 New Zealand rabbits in a randomized manner, after histological and histomorphometric analysis, to determine the level of contact between the bone and implant (BIC%) and the bone area fraction occupancy (BAFO%) inside of the threads. The data collected were statistically analyzed between groups (p < 0.05). The in vitro evaluations showed different roughness patterns between the groups, and the G3 group had the highest values. In vivo evaluations of the BIC% showed 50.45 ± 9.57% for the G1 group, 55.32 ± 10.31% for the G2 group and 68.65 ± 9.98% for the G3 group, with significant statistical difference between the groups (p < 0.0001). In the BAFO% values, the G1 group presented 54.97 ± 9.56%, the G2 group 59.09 ± 10.13% and the G3 group 70.12 ± 11.07%, with statistical difference between the groups (p < 0.001). The results obtained in the evaluations show that the surface with microgrooves stimulates the process of osseointegration, accelerating the healing process, increasing the contact between the bone and the implant and the area of new bone formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...