Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Integr Cancer Ther ; 23: 15347354231223499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38281118

RESUMEN

Ashwagandha (Withania somnifera) has gained worldwide popularity for a multitude of health benefits inclusive of cancer-preventive and curative effects. Despite numerous research data supporting the benefits of this wonder herb, the actual use of ashwagandha for cancer treatment in clinics is limited. The primary reason for this is the inconsistent therapeutic outcome due to highly variable composition and constitution of active ingredients in the plant extract impacting ashwagandha's pharmacology. We investigate here an engineered yield: an ashwagandha extract (Oncowithanib) that has a unique and fixed portion of active ingredients to achieve consistent and effective therapeutic activity. Using the MCF7 cell line, Oncowithanib was studied for its anti-neoplastic efficacy and drug targets associated with cell cycle regulation, translation machinery, and cell survival and apoptosis. Results demonstrate a dose-dependent decline in Oncowithanib-treated MCF7 cell viability and reduced colony-forming ability. Treated cells showed increased cell death as evidenced by enhancement of Caspase 3 enzyme activity and decreased expressions of cell proliferation markers such as Ki67 and Aurora Kinase A. Oncowithanib treatment was also found to be associated with expressional suppression of key cellular kinases such as RSK1, Akt1, and mTOR in MCF7 cells. Our findings indicate that Oncowithanib decreases MCF7 cell survival and propagation, and sheds light on common drug targets that might be good candidates for the development of cancer therapeutics. Further in-depth investigations are required to fully explore the potency and pharmacology of this novel extract. This study also highlights the importance of the standardization of herbal extracts to get consistent therapeutic activity for the disease indication.


Asunto(s)
Neoplasias , Withania , Witanólidos , Humanos , Witanólidos/farmacología , Witanólidos/metabolismo , Supervivencia Celular , Withania/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Neoplasias/tratamiento farmacológico , Carcinogénesis , Transformación Celular Neoplásica
2.
J Nutr Metab ; 2023: 9599744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808919

RESUMEN

Background: Ashwagandha extracts play a significant role in traditional Indian medicine to help treat a wide range of disorders from amnesia, erectile dysfunction, neurodegenerative and cardiovascular diseases, cancer, stress, anxiety, and many more. Ashwagandha root is enriched with bioactive plant metabolites of which withanolides are the most important ones. The concentration and constitution of withanolides primarily determine ashwagandha's potency and pharmacology. Various factors modulate the withanolide constitution in the plant-derived extracts, rendering inconsistent therapeutic efficacy. Standardisation of the extraction protocol and a better understanding of the pharmacology mechanism of different extracts with varied withanolide constitutions is therefore critical for developing reliable, repeatable, and effective ashwagandha-based treatment. Objectives: Here, we work toward defining indication mechanisms for two varieties of ashwagandha extract-ASHWITH (ASH-Ext1) and Regenolide (ASH-Ext2)-with different proprietary withanolide proportions. Methods: ASH-Ext1 was studied for antioxidant signaling modulation using HEK293, HeLa, and A549 cells, and ASH-Ext2 was studied for subcellular drug targets associated with the reactivation and longevity of human hair follicles, using primary human hair follicle dermal papilla cells (HFDPCs). Results: Study findings support the antioxidant activity and Nrf2 signaling modulation by ASH-Ext1 in various cell models. Of note, ASH-Ext2 was found to increase ß-catenin and telomerase reverse transcriptase (TERT) protein expression levels in HFDPCs. Conclusion: The results of drug target modulation show us that the withanolide constitution associated with different extraction protocols influences the pharmacological potential of the extract significantly and points to the value of standardisation not only of total withanolide content but also of internal withanolide proportions.

3.
J Nutr Metab ; 2018: 7195760, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29805804

RESUMEN

The low-carbohydrate high-fat diet (LCHFD), also known as the ketogenic diet, has cycled in and out of popularity for decades as a therapeutic program to treat metabolic syndrome, weight mismanagement, and drug-resistant disorders as complex as epilepsy, cancer, dementia, and depression. Despite the benefits of this diet, health care professionals still question its safety due to the elevated serum ketones it induces and the limited dietary fiber. To compound the controversy, patient compliance with the program is poor due to the restrictive nature of the diet and symptoms related to energy deficit and gastrointestinal adversity during the introductory and energy substrate transition phase of the diet. The studies presented here demonstrate safety and efficacy of the diet including the scientific support and rationale for the administration of exogenous ketone bodies and ketone sources as a complement to the restrictive dietary protocol or as an alternative to the diet. This review also highlights the synergy provided by exogenous ketone, ß-hydroxybutyrate (BHB), accompanied by the short chain fatty acid, butyrate (BA) in the context of cellular and physiological outcomes. More work is needed to unveil the molecular mechanisms by which this program provides health benefits.

4.
Int J Inflam ; 2018: 5023429, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568482

RESUMEN

Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to cardiovascular disease and neuroinflammation. The rhizome's curcumin extract is the most studied active constituent, which exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports of curcucmin's therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data extraction and improved reliability in therapy.

7.
Med Hypotheses ; 85(6): 779-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26604027

RESUMEN

Pathologies of neurological diseases are increasingly recognized to have common structural and molecular events that can fit, sometimes loosely, into a central pathological theme. A better understanding of the genetic, proteomic and metabolic similarities between three common neurodegenerative diseases - Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD) - and how these similarities relate to their unique pathological features may shed more light on the underlying pathology of each. These are complex multigenic neuroinflammatory diseases caused by a combined action by multiple genetic mutations, lifestyle factors and environmental elements including a proposed contribution by transition metals. This comprehensive dynamic makes disease decoding and treatment difficult. One case of ALS, for example, can manifest from a very different pool of genetic mutations than another. In the case of ALS multiple genes in addition to SOD1 are implicated in the pathogenesis of both sporadic and familial variants of the disease. These genes play different roles in the processing and trafficking of signalling, metabolic and structural proteins. However, many of these genetic mutations or the cellular machinery they regulate can play a role in one form or another in PD and AD as well. In addition, the more recent understanding of how TREM-2 mutations factor into inflammatory response has shed new light on how chronic inflammatory activity can escalate to uncontrolled systemic levels in a variety of inflammatory diseases from neurodegenerative, auto-inflammatory and autoimmune diseases. TREM-2 mutations represent yet another complicating element in these multigenic disease pathologies. This review takes us one step back to discuss basic pathological features of these neurodegenerative diseases known to us for some time. However, the objective is to discuss the possibility of related or linked mechanisms that may exist through these basic disease hallmarks that we often classify as absolute signatures of one disease. These new perspectives will be discussed in the context of a new paradigm for Alzheimer's disease that implicates heavy metals as a primary cause. Plausible links between these distinctly different pathologies are presented showing intersections of their distinct pathologies that hinge on metal interactions.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Intoxicación del Sistema Nervioso por Metales Pesados/fisiopatología , Metales/envenenamiento , Modelos Neurológicos , Enfermedades Neurodegenerativas/fisiopatología , Progresión de la Enfermedad , Medicina Basada en la Evidencia , Intoxicación del Sistema Nervioso por Metales Pesados/complicaciones , Humanos , Enfermedades Neurodegenerativas/etiología
8.
Med Hypotheses ; 84(5): 460-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25691377

RESUMEN

It is estimated that 5.5 Million North Americans suffer from varying degrees of Alzheimer's disease (AD) and by the year 2050 it may be one in 85 people globally (100 Million). It will be shown that heavy metal toxicity plays a significant role in sporadic AD. Although current literature speaks to involvement of metal ions (via Fenton reaction), studies and reviewers have yet to link cellular events including known structural changes such as amyloid plaque development to this metal toxicity the way it is proposed here. Contrary to the current AD model which positions BACE1 (ß-secretase) as an aberrant or AD-advancing enzyme, it is proposed herein that the neuron's protective counteraction to this metal toxicity is, in fact, a justified increase in BACE1 activity and amyloid precursor protein (APP) processing to yield more secreted APP (sAPP) and ß-amyloid peptide in response to metal toxicity. This new perspective which justifies a functional role for APP, BACE1 enzyme activity and the peptide products from this activity may at first appear to be counterintuitive. Compelling evidence, however, is presented and a mechanism is shown herein that validate BACE1 recruitment and the resulting ß-amyloid protein as strategic countermeasures serving the cell effectively against neuro-impeding disease. It is proposed that ß-amyloid peptide chelates and sequesters free heavy metals in the extracellular medium to aggregate as amyloid plaque while unchelated ß-amyloid migrates across the cell membrane to chelate intracellular free divalent metals. The sequestered intracellular metal is subsequently chaperoned as a metallo-peptide to cross the plasma membrane and aggregate as amyloid plaques extracellularly. The BACE1 countermeasure is not genetic or metabolic aberration; and this novel conclusion demonstrates that it must not be inhibited as currently targeted. APP, BACE1, ß-amyloid peptide, and sAPP play positive roles against the preclinical oxidative load that predates AD symptoms for as long as 20 years. A healthy neuron may tolerate free metal toxicity, such as iron in the case of injury-induced amyloid, for as long as twenty years due to this very BACE1 activity. In later stages, the uncontrolled metals and ROS are compounded by other factors which together overcome this BACE1/ß-amyloid protein countermeasure. This results in a sudden increase in IL-1 leading to Tau's hyperphosphorylation as cited and eventually to Tau dissociation from the microtubule cytoskeleton interrupting cell trafficking. At this later stage of AD the ß-amyloid protein which once served as a vehicle to escort toxic metals to the extracellular medium and a trap to form a relatively benign extraneuronal disposal site is no longer translocated due to interruption of trafficking and now accumulates intracellularly facilitating hyper-oxidative ROS levels and contributes to irreversible neuron apoptosis.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/fisiopatología , Intoxicación por Metales Pesados , Modelos Biológicos , Neuronas/metabolismo , Intoxicación/complicaciones , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Quelantes/metabolismo , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...