Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(5): eade1085, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735786

RESUMEN

The boundaries of topologically associating domains (TADs) are delimited by insulators and/or active promoters; however, how they are initially established during embryogenesis remains unclear. Here, we examined this during the first hours of Drosophila embryogenesis. DNA-FISH confirms that intra-TAD pairwise proximity is established during zygotic genome activation (ZGA) but with extensive cell-to-cell heterogeneity. Most newly formed boundaries are occupied by combinations of CTCF, BEAF-32, and/or CP190. Depleting each insulator individually from chromatin revealed that TADs can still establish, although with lower insulation, with a subset of boundaries (~10%) being more dependent on specific insulators. Some weakened boundaries have aberrant gene expression due to unconstrained enhancer activity. However, the majority of misexpressed genes have no obvious direct relationship to changes in domain-boundary insulation. Deletion of an active promoter (thereby blocking transcription) at one boundary had a greater impact than deleting the insulator-bound region itself. This suggests that cross-talk between insulators and active promoters and/or transcription might reinforce domain boundary insulation during embryogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Genoma , Cromatina/genética , Cromosomas , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Factor de Unión a CCCTC/genética
2.
Curr Opin Genet Dev ; 67: 119-129, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497970

RESUMEN

The past decade has seen a huge jump in the resolution and scale at which we can interrogate the three-dimensional properties of the genome. This revealed different types of chromatin structures including topologically associating domains, partitioning genes and their enhancers into interacting domains. While the visualisation of these topologies and their dynamics has dramatically improved, our understanding of their underlying mechanisms and functional roles in gene expression has lagged behind. A suite of recent studies have addressed this using genetic manipulations to perturb topological features and loops at different scales. Here we assess the new biological insights gained on the functional relationship between genome topology and gene expression, with a particular focus on enhancer function.


Asunto(s)
Cromatina/ultraestructura , Elementos de Facilitación Genéticos/genética , Genoma/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica/genética , Humanos
3.
Dev Biol ; 429(1): 105-117, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716713

RESUMEN

Myc proto-oncogenes regulate diverse cellular processes during development, but their roles during morphogenesis of specific tissues are not fully understood. We found that c-myc regulates cell proliferation in mouse lens development and previous genome-wide studies suggested functional roles for N-myc in developing lens. Here, we examined the role of N-myc in mouse lens development. Genetic inactivation of N-myc in the surface ectoderm or lens vesicle impaired eye and lens growth, while "late" inactivation in lens fibers had no effect. Unexpectedly, defective growth of N-myc-deficient lenses was not associated with alterations in lens progenitor cell proliferation or survival. Notably, N-myc-deficient lens exhibited a delay in degradation of DNA in terminally differentiating lens fiber cells. RNA-sequencing analysis of N-myc-deficient lenses identified a cohort of down-regulated genes associated with fiber cell differentiation that included DNaseIIß. Further, an integrated analysis of differentially expressed genes in N-myc-deficient lens using normal lens expression patterns of iSyTE, N-myc-binding motif analysis and molecular interaction data from the String database led to the derivation of an N-myc-based gene regulatory network in the lens. Finally, analysis of N-myc and c-myc double-deficient lens demonstrated that these Myc genes cooperate to drive lens growth prior to lens vesicle stage. Together, these findings provide evidence for exclusive and cooperative functions of Myc transcription factors in mouse lens development and identify novel mechanisms by which N-myc regulates cell differentiation during eye morphogenesis.


Asunto(s)
Diferenciación Celular , Cristalino/citología , Cristalino/crecimiento & desarrollo , Proteína Proto-Oncogénica N-Myc/metabolismo , Animales , Diferenciación Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular/genética , Supervivencia Celular/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Cristalino/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética , Transcriptoma/genética
4.
An Acad Bras Cienc ; 87(2 Suppl): 1323-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26397828

RESUMEN

Genome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR) has been the standard method to modify genomic sequences. Nevertheless, nuclease-guided genome editing methods that were developed recently, such as ZFN, TALEN and CRISPR/Cas, opened new perspectives for biomedical research. Here, we present a brief historical perspective of genome modification methods, focusing on transgenic mice models. Moreover, we describe how new techniques were discovered and improved, present the paradigm shifts and discuss their limitations and applications for biomedical research as well as possible future directions.


Asunto(s)
Animales Modificados Genéticamente/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Genética/métodos , Dedos de Zinc/genética , Animales , Marcación de Gen/métodos , Ratones , Ratas
5.
PLoS One ; 9(2): e87182, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24503550

RESUMEN

Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc) is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27(Kip1) proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.


Asunto(s)
Cristalino/citología , Cristalino/embriología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Cristalinas/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ectodermo/citología , Ectodermo/crecimiento & desarrollo , Células Epiteliales/citología , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Proteínas de Homeodominio/metabolismo , Ratones , Fenotipo , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Supresoras de Tumor/metabolismo
6.
PLoS One ; 8(7): e69209, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935957

RESUMEN

Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.


Asunto(s)
Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Ojo/metabolismo , Proteínas Nucleares/genética , Organogénesis/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Encéfalo/embriología , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Cerebelo/embriología , Cerebelo/metabolismo , Proteínas de Unión al ADN , Epistasis Genética , Ojo/embriología , Homeostasis/genética , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Fenotipo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Células de Purkinje/metabolismo , Retina/citología , Retina/embriología , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...