Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 201: 107838, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364510

RESUMEN

Perennial plants are frequently exposed to severe and prolonged drought, and when the balance between water transport and transpirational demand is compromised trees are in danger of embolism formation. To maintain the physiological balance, plants can rely on mechanisms to quickly recover the lost xylem hydraulic capacity and reduce the prolonged impact on photosynthetic activity upon rehydration. Among factors helpful for plants to sustain acclimation and adaptation responses to drought and promote recovery, maintaining an optimal nutritional status is crucial for plant survival. This study aimed to investigate the physiological and biochemical responses under drought and recovery of Populus nigra plants grown in soil with impaired nutrient bioavailability obtained by adding calcium oxide (CaO) to the substrate. Although the CaO treatment did not affect plant growth, in well-watered conditions, treated poplars displayed an impaired inorganic ions profile in tissues. Under drought, although CaO-treated and untreated plants showed similar physiological responses, the former closed the stomata earlier. During water stress relief, the CaO-treated poplars exhibited a faster stomatal opening and a higher capacity to restore xylem hydraulic conductivity compared to not-treated plants, probably due to the higher osmolyte accumulation during drought. The content of some inorganic ions (e.g, Ca2+ and Cl-) was also higher in the xylem sap collected from stressed CaO-treated plants, thus contributing to increase the osmotic gradient necessary for the recovery. Taken together, our results suggest that CaO treatment promotes a faster and more efficient plant recovery after drought due to a modulation of ions homeostasis.


Asunto(s)
Sequías , Populus , Suelo/química , Hojas de la Planta/fisiología , Populus/fisiología , Iones , Xilema/fisiología
2.
Physiol Plant ; 174(1): e13590, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34729782

RESUMEN

Plants are frequently exposed to prolonged and intense drought events. To survive, species must implement strategies to overcome progressive drought while maintaining sufficient resources to sustain the recovery of functions. Our objective was to understand how stress rate development modulates energy reserves and affects the recovery process. Grenache Vitis vinifera cultivar was exposed to either fast-developing drought (within few days; FDD), typical of pot experiments, or slow-developing drought (few weeks, SDD), more typical for natural conditions. FDD was characterized by fast (2-3 days) stomatal closure in response to increased stress level, high abscisic acid (ABA) accumulation in xylem sap (>400 µg L-1 ) without the substantial changes associated with stem priming for recovery (no accumulation of sugar or drop in xylem sap pH). In contrast, SDD was characterized by gradual stomatal closure, low ABA accumulation (<100 µg L-1 ) and changes that primed the stem for recovery (xylem sap acidification from 6 to 5.5 pH and sugar accumulation from 1 to 3 g L-1 ). Despite FDD and SDD demonstrating similar trends over time in the recovery of stomatal conductance, they differed in their sensitivity to xylem ABA. Grenache showed near-isohydric and near-anisohydric behavior depending on the rate of drought progression, gauging the risk between hydraulic integrity and photosynthetic gain. The isohydry observed during FDD could potentially provide protection from large sudden swings in tension, while transitioning to anisohydry during SDD could prioritize the maintenance of photosynthetic activity over hydraulic security.


Asunto(s)
Sequías , Vitis , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Vitis/fisiología , Agua/fisiología , Xilema/fisiología
3.
Plant Physiol Biochem ; 166: 1076-1086, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34298322

RESUMEN

Recently, biostimulants have been used in sustainable agriculture as priming agents able to increase crop tolerance to abiotic stressors. Here, a soil application of GHI_16_VHL, a plant protein hydrolysate-based biostimulant, was tested for its capability to mitigate severe water stress effects on Capsicum annuum at flowering time. The biostimulant influence on plant physiological status was monitored upon stress and its relief, by measuring chlorophyll levels, stomatal density, stem water potential, leaf gas exchanges and plant growth. Moreover, leaf osmoregulation and oxidative stress levels were also evaluated by quantifying free proline, total non-structural carbohydrates (NSC), ROS-scavenging activity and H2O2 level. Although biostimulant-primed plants showed a quicker decrease of stem water potential with respect to untreated plants upon drought imposition, they recovered faster probably due to the higher leaf osmolyte accumulation, namely NSC during drought. Moreover, leaf gas exchange recovery was prompted in biostimulant-treated plants, which showed an incremented stomatal density and the same chlorophyll level of well-watered plants at the end of the recovery phase. Hydrogen peroxide level was significantly lower during stress and early recovery in biostimulant primed plants, probably due to the higher catalase activity in treated plants before drought or to the higher level of non-enzymatic antioxidant scavengers in primed stressed plants. Finally, the biostimulant priming increased aboveground relative growth rate and final fruit yield of stressed plants. Taken together, our data suggest that the biostimulant priming treatment promotes a faster and more efficient plant recovery after drought.


Asunto(s)
Capsicum , Sequías , Clorofila , Peróxido de Hidrógeno , Hidrolisados de Proteína
4.
New Phytol ; 229(2): 820-830, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890423

RESUMEN

In drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process. Application of the vanadate treatment (NaVO3, an inhibitor of many ATPases) completely halted recovery from drought-induced embolism for up to 24 h after re-irrigation, while partial recovery was observed in vivo in control plants using X-ray microcomputed tomography. Our results suggest that stem hydraulic recovery in poplar is a biological, energy-dependent process that coincides with accumulation of sugars in the apoplast during stress. Recovery and damage are spatially coordinated, with embolism formation occurring from the inside out and refilling from the outside in. The outside-in pattern highlights the importance of xylem proximity to the sugars within the phloem to the embolism recovery process.


Asunto(s)
Sequías , Embolia , Tallos de la Planta , Agua , Microtomografía por Rayos X , Xilema
5.
Plant Cell Environ ; 42(6): 1775-1787, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30756400

RESUMEN

Some plant species are capable of significant reduction of xylem embolism during recovery from drought despite stem water potential remains negative. However, the functional biology underlying this process is elusive. We subjected poplar trees to drought stress followed by a period of recovery. Water potential, hydraulic conductivity, gas exchange, xylem sap pH, and carbohydrate content in sap and woody stems were monitored in combination with an analysis of carbohydrate metabolism, enzyme activity, and expression of genes involved in sugar metabolic and transport pathways. Drought resulted in an alteration of differential partitioning between starch and soluble sugars. Upon stress, an increase in the starch degradation rate and the overexpression of sugar symporter genes promoted the efflux of disaccharides (mostly maltose and sucrose) to the apoplast. In turn, the efflux activity of the sugar-proton cotransporters caused a drop in xylem pH. The newly acidic environment induced the activity of apoplastic invertases leading to the accumulation of monosaccharides in the apoplast, thus providing the main osmoticum necessary for recovery. During drought and recovery, a complex network of coordinated molecular and biochemical signals was activated at the interface between xylem and parenchyma cells that appeared to prime the xylem for hydraulic recovery.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Redes y Vías Metabólicas/fisiología , Estrés Fisiológico , Xilema/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Carbohidratos , Sequías , Regulación de la Expresión Génica de las Plantas , Glucosa/análisis , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Monosacáridos/metabolismo , Ósmosis , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Populus/genética , Populus/metabolismo , Almidón/análisis , Agua/metabolismo , Madera/química , Xilema/química
6.
New Phytol ; 220(1): 104-110, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30040128

RESUMEN

Synchrotron X-ray computed micro-tomography (microCT) has emerged as a promising noninvasive technique for in vivo monitoring of xylem function, including embolism build-up under drought and hydraulic recovery following re-irrigation. Yet, the possible harmful effects of ionizing radiation on plant tissues have never been quantified. We specifically investigated the eventual damage suffered by stem living cells of three different species exposed to repeated microCT scans. Stem samples exposed to one, two or three scans were used to measure cell membrane and RNA integrity, and compared to controls never exposed to X-rays. Samples exposed to microCT scans suffered serious alterations to cell membranes, as revealed by marked increase in relative electrolyte leakage, and also underwent severe damage to RNA integrity. The negative effects of X-rays were apparent in all species tested, but the magnitude of damage and the minimum number of scans inducing negative effects were species-specific. Our data show that multiple microCT scans lead to disruption of fundamental cellular functions and processes. Hence, microCT investigation of phenomena that depend on physiological activity of living cells may produce erroneous results and lead to incorrect conclusions.


Asunto(s)
Imagenología Tridimensional/métodos , Sincrotrones , Microtomografía por Rayos X , Electrólitos/metabolismo , Populus/anatomía & histología , ARN de Planta/genética , Temperatura
7.
Food Chem ; 211: 947-56, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27283716

RESUMEN

The influence exerted by bunch microclimate on some C13-norisoprenoid precursors content was investigated for the first time in Nebbiolo grapes during ripening. Samples were collected, during two consecutive seasons, from two vineyards, which are characterized by different microclimatic conditions caused by vine vigour heterogeneity and different vineyard aspects. Enzymatic hydrolysis of the glycosides extracted from the grapes, and subsequent GC-MS determination of the aglycones, highlighted that the majority of norisoprenoid glycosides accumulated in Nebbiolo berries from pre-veraison until 3-4weeks post-veraison. Vineyard aspect and vine vigour affected the timing of the maximum concentration of norisoprenoid precursors and their subsequent decrease at harvest. Low light in the vigorous blocks penalized norisoprenoids peak concentration. In the south less vigorous blocks, a decline of total norisoprenoids content during the pre-harvest period was observed. This decline appeared mainly regulated by the temperature. Vintage and/or microclimatic conditions affected the final content of some important norisoprenoids.


Asunto(s)
Microclima , Vitis/química , Olfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...