Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1047767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025379

RESUMEN

The generation of neurons in the central nervous system is a complex, stepwise process necessitating the coordinated activity of mitotic progenitors known as radial glia. Following neural tube closure, radial glia undergo a period of active proliferation to rapidly expand their population, creating a densely packed neurepithelium. Simultaneously, radial glia positioned across the neural tube are uniquely specified to produce diverse neuronal sub-types. Although these cellular dynamics are well studied, the molecular mechanisms governing them are poorly understood. The six-transmembrane Glycerophosphodiester Phosphodiesterase proteins (GDE2, GDE3, and GDE6) comprise a family of cell-surface enzymes expressed in the embryonic nervous system. GDE proteins can release Glycosylphosphatidylinositol-anchored proteins from the cell surface via cleavage of their lipid anchor. GDE2 has established roles in motor neuron differentiation and oligodendrocyte maturation, and GDE3 regulates oligodendrocyte precursor cell proliferation. Here, we describe a role for GDE6 in early neural tube development. Using RNAscope, we show that Gde6 mRNA is expressed by ventricular zone progenitors in the caudal neural tube. Utilizing in-ovo electroporation, we show that GDE6 overexpression promotes neural tube hyperplasia and ectopic growths of the neurepithelium. At later stages, electroporated embryos exhibit an expansion of the ventral patterning domains accompanied by reduced cross-repression. Ultimately, electroporated embryos fail to produce the full complement of post-mitotic motor neurons. Our findings indicate that GDE6 overexpression significantly affects radial glia function and positions GDE6 as a complementary factor to GDE2 during neurogenesis.

2.
Acta Neuropathol Commun ; 10(1): 73, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550203

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the viability of upper and lower motor neurons. Current options for treatment are limited, necessitating deeper understanding of the mechanisms underlying ALS pathogenesis. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a six-transmembrane protein that acts on the cell surface to cleave the glycosylphosphatidylinositol (GPI)-anchor that tethers some proteins to the membrane. GDE2 is required for the survival of spinal motor neurons but whether GDE2 neuroprotective activity is disrupted in ALS is not known. We utilized a combination of mouse models and patient post-mortem samples to evaluate GDE2 functionality in ALS. Haplogenetic reduction of GDE2 exacerbated motor neuron degeneration and loss in SOD1G93A mice but not in control SOD1WT transgenic animals, indicating that GDE2 neuroprotective function is diminished in the context of SOD1G93A. In tissue samples from patients with ALS, total levels of GDE2 protein were equivalent to healthy controls; however, membrane levels of GDE2 were substantially reduced. Indeed, GDE2 was found to aberrantly accumulate in intracellular compartments of ALS motor cortex, consistent with a disruption of GDE2 function at the cell surface. Supporting the impairment of GDE2 activity in ALS, tandem-mass-tag mass spectrometry revealed a pronounced reduction of GPI-anchored proteins released into the CSF of patients with ALS compared with control patients. Taken together, this study provides cellular and biochemical evidence that GDE2 distribution and activity is disrupted in ALS, supporting the notion that the failure of GDE2-dependent neuroprotective pathways contributes to neurodegeneration and motor neuron loss in disease. These observations highlight the dysregulation of GPI-anchored protein pathways as candidate mediators of disease onset and progression and accordingly, provide new insight into the mechanisms underlying ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/patología , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
3.
Cell Rep ; 31(5): 107540, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375055

RESUMEN

Neurons and oligodendrocytes communicate to regulate oligodendrocyte development and ensure appropriate axonal myelination. Here, we show that Glycerophosphodiester phosphodiesterase 2 (GDE2) signaling underlies a neuronal pathway that promotes oligodendrocyte maturation through the release of soluble neuronally derived factors. Mice lacking global or neuronal GDE2 expression have reduced mature oligodendrocytes and myelin proteins but retain normal numbers of oligodendrocyte precursor cells (OPCs). Wild-type (WT) OPCs cultured in conditioned medium (CM) from Gde2-null (Gde2KO) neurons exhibit delayed maturation, recapitulating in vivo phenotypes. Gde2KO neurons show robust reduction in canonical Wnt signaling, and genetic activation of Wnt signaling in Gde2KO neurons rescues in vivo and in vitro oligodendrocyte maturation. Phosphacan, a known stimulant of oligodendrocyte maturation, is reduced in CM from Gde2KO neurons but is restored when Wnt signaling is activated. These studies identify GDE2 control of Wnt signaling as a neuronal pathway that signals to oligodendroglia to promote oligodendrocyte maturation.


Asunto(s)
Neuronas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Axones/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Ratones , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Neurogénesis/fisiología
4.
Development ; 147(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31932351

RESUMEN

Oligodendrocyte development is tightly controlled by extrinsic signals; however, mechanisms that modulate cellular responses to these factors remain unclear. Six-transmembrane glycerophosphodiester phosphodiesterases (GDEs) are emerging as central regulators of cellular differentiation via their ability to shed glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. We show here that GDE3 controls the pace of oligodendrocyte generation by negatively regulating oligodendrocyte precursor cell (OPC) proliferation. GDE3 inhibits OPC proliferation by stimulating ciliary neurotrophic factor (CNTF)-mediated signaling through release of CNTFRα, the ligand-binding component of the CNTF-receptor multiprotein complex, which can function as a soluble factor to activate CNTF signaling. GDE3 releases soluble CNTFRα by GPI-anchor cleavage from the plasma membrane and from extracellular vesicles (EVs) after co-recruitment of CNTFRα in EVs. These studies uncover new physiological roles for GDE3 in gliogenesis and identify GDE3 as a key regulator of CNTF-dependent regulation of OPC proliferation through release of CNTFRα.


Asunto(s)
Subunidad alfa del Receptor del Factor Neurotrófico Ciliar/metabolismo , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Membrana Celular/metabolismo , Proliferación Celular , Factor Neurotrófico Ciliar/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Eliminación de Gen , Células HEK293 , Humanos , Ratones , Transducción de Señal , Solubilidad , Médula Espinal/embriología , Médula Espinal/metabolismo
5.
Curr Opin Neurobiol ; 53: 1-7, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29694927

RESUMEN

The embryonic generation of motor neurons is a complex process involving progenitor patterning, fate specification, differentiation, and maturation. Throughout this progression, the differential expression of transcription factors has served as our road map for the eventual cell fate of nascent motor neurons. Recent findings from in vivo and in vitro models of motor neuron development have expanded our understanding of how transcription factors govern motor neuron identity and their individual regulatory mechanisms. With the advent of next generation sequencing approaches, researchers now have unprecedented access to the gene regulatory dynamics involved in motor neuron development and are uncovering new connections linking neurodevelopment and neurodegenerative disease.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas Motoras/fisiología , Factores de Transcripción/fisiología , Animales
6.
Mol Neurodegener ; 12(1): 8, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103900

RESUMEN

BACKGROUND: Glycerophosphodiester phosphodiesterase 2 (GDE2) is a six-transmembrane protein that cleaves glycosylphosphatidylinositol (GPI) anchors to regulate GPI-anchored protein activity at the cell surface. In the developing spinal cord, GDE2 utilizes its enzymatic function to regulate the production of specific classes of motor neurons and interneurons; however, GDE2's roles beyond embryonic neurogenesis have yet to be defined. METHOD: Using a panel of histological, immunohistochemical, electrophysiological, behavioral, and biochemistry techniques, we characterized the postnatal Gde2 -/- mouse for evidence of degenerative neuropathology. A conditional deletion of Gde2 was used to study the temporal requirements for GDE2 in neuronal survival. Biochemical approaches identified deficits in the processing of GPI-anchored GDE2 substrates in the SOD1 G93A mouse model of familial Amyotrophic Lateral Sclerosis that shows robust motor neuron degeneration. RESULTS: Here we show that GDE2 expression continues postnatally, and adult mice lacking GDE2 exhibit a slow, progressive neuronal degeneration with pathologies similar to human neurodegenerative disease. Early phenotypes include vacuolization, microgliosis, cytoskeletal accumulation, and lipofuscin deposition followed by astrogliosis and cell death. Remaining motor neurons exhibit peripheral motor unit restructuring causing behavioral motor deficits. Genetic ablation of GDE2 after embryonic neurogenesis is complete still elicits degenerative pathology, signifying that GDE2's requirement for neuronal survival is distinct from its involvement in neuronal differentiation. Unbiased screens identify impaired processing of Glypican 4 and 6 in Gde2 null animals, and Glypican release is markedly reduced in SOD1 G93A mice. CONCLUSIONS: This study identifies a novel function for GDE2 in neuronal survival and implicates deregulated GPI-anchored protein activity in pathways mediating neurodegeneration. These findings provide new molecular insight for neuropathologies found in multiple disease settings, and raise the possibility of GDE2 hypofunctionality as a component of neurodegenerative disease.


Asunto(s)
Neuronas Motoras/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Muerte Celular/fisiología , Diferenciación Celular/genética , Supervivencia Celular , Modelos Animales de Enfermedad , Ratones Transgénicos , Neurogénesis/fisiología , Hidrolasas Diéster Fosfóricas/genética
7.
Neuron ; 92(6): 1149-1151, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009267

RESUMEN

Rhee et al. (2016) in this issue of Neuron and Velasco et al. (2016) in Cell Stem Cell find that the activity of transcription factors binding sequentially to a series of transient early and late enhancers directs gene expression that is essential for motor neuron differentiation and function.


Asunto(s)
Diferenciación Celular , Factores de Transcripción/genética , Expresión Génica , Neuronas Motoras/citología
8.
J Neurosci ; 26(33): 8609-21, 2006 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16914687

RESUMEN

To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER(T2)) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER(T2)) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG). After 2-4 weeks, the tagged GFAP lineage included proliferating progenitors expressing the neuronal marker Dcx (Doublecortin) in the SVZ and the DG. After 4 weeks, the GFAP lineage generated mature neurons in the olfactory bulb (OB), DG, and, strikingly, also in the cerebral cortex. A major portion of all neurons in the DG and OB born at the end of the first postnatal week were generated from GFAP+ cells. In addition to neurons, mature oligodendrocytes and astrocytes populating the cerebral cortex and white matter were also the progeny of GFAP+ astroglial ancestors. Thus, genetic fate mapping of postnatal GFAP+ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.


Asunto(s)
Animales Recién Nacidos/fisiología , Astrocitos/citología , Diferenciación Celular , Linaje de la Célula , Neuronas/citología , Células Madre/citología , Animales , Animales Recién Nacidos/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Ventrículos Cerebrales , Proteína Doblecortina , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Integrasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Bulbo Olfatorio/citología , Oligodendroglía/citología , Regiones Promotoras Genéticas , Recombinación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...