Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 9(7): 1453-1465, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37521801

RESUMEN

Chemical and molecular-based computers may be promising alternatives to modern silicon-based computers. In particular, hybrid systems, where tasks are split between a chemical medium and traditional silicon components, may provide access and demonstration of chemical advantages such as scalability, low power dissipation, and genuine randomness. This work describes the development of a hybrid classical-molecular computer (HCMC) featuring an electrochemical reaction on top of an array of discrete electrodes with a fluorescent readout. The chemical medium, optical readout, and electrode interface combined with a classical computer generate a feedback loop to solve several canonical optimization problems in computer science such as number partitioning and prime factorization. Importantly, the HCMC makes constructive use of experimental noise in the optical readout, a milestone for molecular systems, to solve these optimization problems, as opposed to in silico random number generation. Specifically, we show calculations stranded in local minima can consistently converge on a global minimum in the presence of experimental noise. Scalability of the hybrid computer is demonstrated by expanding the number of variables from 4 to 7, increasing the number of possible solutions by 1 order of magnitude. This work provides a stepping stone to fully molecular approaches to solving complex computational problems using chemistry.

2.
Chem Sci ; 11(10): 2647-2656, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-34084323

RESUMEN

The ability to optically monitor a chemical reaction and generate an in situ readout is an important enabling technology, with applications ranging from the monitoring of reactions in flow, to the critical assessment step for combinatorial screening, to mechanistic studies on single reactant and catalyst molecules. Ideally, such a method would be applicable to many polymers and not require only a specific monomer for readout. It should also be applicable if the reactions are carried out in microdroplet chemical reactors, which offer a route to massive scalability in combinatorial searches. We describe a convenient optical method for monitoring polymerization reactions, fluorescence polarization anisotropy monitoring, and show that it can be applied in a robotically generated microdroplet. Further, we compare our method to an established optical reaction monitoring scheme, the use of Aggregation-Induced Emission (AIE) dyes, and find the two monitoring schemes offer sensitivity to different temporal regimes of the polymerization, meaning that the combination of the two provides an increased temporal dynamic range. Anisotropy is sensitive at early times, suggesting it will be useful for detecting new polymerization "hits" in searches for new reactivity, while the AIE dye responds at longer times, suggesting it will be useful for detecting reactions capable of reaching higher molecular weights.

3.
J Am Chem Soc ; 140(46): 15827-15841, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30372044

RESUMEN

The interplay between micromorphology and electronic properties is an important theme in organic electronic materials. Here, we show that a spirofluorene-functionalized boron-dipyrromethene (BODIPY) with an alkyl norbornyl tail self-assembles into nanoparticles with qualitatively different properties as compared to the polymerized species. Further, the nanoparticles exhibit a host of unique emissive properties, including photobrightening, a blue satellite peak, and spectral diffusion. Extensive photophysical characterization, including single-particle imaging and spectroscopy, and time-resolved fluorescence, coupled with electronic structure calculations based on an experimentally determined crystal structure, allow a mechanism to be developed. Specifically, BODIPY chromophores are observed to form quasi-two-dimensional layers, where stacking of unit cells adds either J-aggregate character or H-aggregate character depending on the direction of the stacking. Particularly strongly H-coupled domains show the rare process of emission from an upper exciton state, in violation of Kasha's rule, and result in the blue satellite peak. The spatial heterogeneity of structure thus maps onto a gradient of photophysical behavior as seen in single-particle imaging, and the temporal evolution of structure maps onto fluctuating emissive behavior, as seen in single-particle spectroscopy. Taken together, this system provides a striking example of how physical structure and electronic properties are intertwined, and a rare opportunity to use one to chart the other.

4.
ACS Sens ; 2(7): 903-908, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28750532

RESUMEN

Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

5.
J Am Chem Soc ; 138(49): 15903-15910, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960306

RESUMEN

Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. To understand the relationship between these redox processes, an experimental study was carried out to probe the 1 e- and 2 e-/2 H+ reduction potentials of a number of common quinones. The results reveal a non-linear correlation between the 1 e- and 2 e-/2 H+ reduction potentials. This unexpected observation prompted a computational study of 134 different quinones, probing their 1 e- reduction potentials, pKa values, and 2 e-/2 H+ reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident for quinones that feature intramolecular hydrogen bonding, halogen substituents, charged substituents, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e- versus 2 e-/2 H+ reduction potentials, have important implications for designing quinones with tailored redox properties.


Asunto(s)
Electrones , Protones , Teoría Cuántica , Quinonas/química , Oxidación-Reducción
6.
Inorg Chem ; 54(7): 3325-30, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25806594

RESUMEN

We report the first example of a sulfinato Fe(III) complex acting as a highly active electrocatalyst for proton reduction. The sulfinate binds to the metal through oxygen, resulting in a seven-membered chelate ring that is likely hemilabile during catalysis. Proton reduction occurs at -1.57 V versus Fc/Fc(+) in CH3CN with an ic/ip = 13 in CH3CN (kobs = 3300 s(-1)) and an overpotential of 800 mV. The catalysis is first order with respect to [catalyst] and second order with respect to [trifluoracetic acid]. An 11% increase in catalytic activity is observed in the presence of water, suggesting that sulfinate moieties are viable functional groups for aqueous proton reduction catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA