Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2403031121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687785

RESUMEN

The loading of processed peptides on to major histocompatibility complex II (MHC-II) molecules for recognition by T cells is vital to cell-mediated adaptive immunity. As part of this process, MHC-II associates with the invariant chain (Ii) during biosynthesis in the endoplasmic reticulum to prevent premature peptide loading and to serve as a scaffold for subsequent proteolytic processing into MHC-II-CLIP. Cryo-electron microscopy structures of full-length Human Leukocyte Antigen-DR (HLA-DR) and HLA-DQ complexes associated with Ii, resolved at 3.0 to 3.1 Å, elucidate the trimeric assembly of the HLA/Ii complex and define atomic-level interactions between HLA, Ii transmembrane domains, loop domains, and class II-associated invariant chain peptides (CLIP). Together with previous structures of MHC-II peptide loading intermediates DO and DM, our findings complete the structural path governing class II antigen presentation.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Microscopía por Crioelectrón , Antígenos de Histocompatibilidad Clase II , Humanos , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/química , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos HLA-DR/química , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/inmunología , Presentación de Antígeno , Antígenos HLA-DQ/química , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DQ/inmunología , Modelos Moleculares , Retículo Endoplásmico/metabolismo , Conformación Proteica , Unión Proteica
2.
Mol Cell ; 84(10): 1995-2005.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38614096

RESUMEN

Cytokines regulate immune responses by binding to cell surface receptors, including the common subunit beta (ßc), which mediates signaling for GM-CSF, IL-3, and IL-5. Despite known roles in inflammation, the structural basis of IL-5 receptor activation remains unclear. We present the cryo-EM structure of the human IL-5 ternary receptor complex, revealing architectural principles for IL-5, GM-CSF, and IL-3. In mammalian cell culture, single-molecule imaging confirms hexameric IL-5 complex formation on cell surfaces. Engineered chimeric receptors show that IL-5 signaling, as well as IL-3 and GM-CSF, can occur through receptor heterodimerization, obviating the need for higher-order assemblies of ßc dimers. These findings provide insights into IL-5 and ßc receptor family signaling mechanisms, aiding in the development of therapies for diseases involving deranged ßc signaling.


Asunto(s)
Microscopía por Crioelectrón , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-3 , Multimerización de Proteína , Transducción de Señal , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Interleucina-3/metabolismo , Interleucina-3/química , Interleucina-3/genética , Células HEK293 , Unión Proteica , Modelos Moleculares , Interleucina-5/metabolismo , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Subunidad beta Común de los Receptores de Citocinas/genética , Subunidad beta Común de los Receptores de Citocinas/química , Imagen Individual de Molécula , Relación Estructura-Actividad , Sitios de Unión , Receptores de Interleucina-5/metabolismo , Receptores de Interleucina-5/genética , Receptores de Interleucina-5/química
3.
J Struct Biol ; 216(2): 108086, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38527711

RESUMEN

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used ß-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of ß-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of ß-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing ß-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.

4.
Elife ; 122023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535399

RESUMEN

Membrane receptor guanylyl cyclases play a role in many important facets of human physiology, from regulating blood pressure to intestinal fluid secretion. The structural mechanisms which influence these important physiological processes have yet to be explored. We present the 3.9 Å resolution cryo-EM structure of the human membrane receptor guanylyl cyclase GC-C in complex with Hsp90 and its co-chaperone Cdc37, providing insight into the mechanism of Cdc37 mediated binding of GC-C to the Hsp90 regulatory complex. As a membrane protein and non-kinase client of Hsp90-Cdc37, this work shows the remarkable plasticity of Cdc37 to interact with a broad array of clients with significant sequence variation. Furthermore, this work shows how membrane receptor guanylyl cyclases hijack the regulatory mechanisms used for active kinases to facilitate their regulation. Given the known druggability of Hsp90, these insights can guide the further development of membrane receptor guanylyl cyclase-targeted therapeutics and lead to new avenues to treat hypertension, inflammatory bowel disease, and other membrane receptor guanylyl cyclase-related conditions.


Asunto(s)
Proteínas de Ciclo Celular , Chaperoninas , Proteínas HSP90 de Choque Térmico , Receptores Acoplados a la Guanilato-Ciclasa , Humanos , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo
5.
Cell ; 186(19): 4189-4203.e22, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37633268

RESUMEN

Thrombopoietin (THPO or TPO) is an essential cytokine for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Here, we report the 3.4 Å resolution cryoelectron microscopy structure of the extracellular TPO-TPO receptor (TpoR or MPL) signaling complex, revealing the basis for homodimeric MPL activation and providing a structural rationalization for genetic loss-of-function thrombocytopenia mutations. The structure guided the engineering of TPO variants (TPOmod) with a spectrum of signaling activities, from neutral antagonists to partial- and super-agonists. Partial agonist TPOmod decoupled JAK/STAT from ERK/AKT/CREB activation, driving a bias for megakaryopoiesis and platelet production without causing significant HSC expansion in mice and showing superior maintenance of human HSCs in vitro. These data demonstrate the functional uncoupling of the two primary roles of TPO, highlighting the potential utility of TPOmod in hematology research and clinical HSC transplantation.


Asunto(s)
Receptores de Trombopoyetina , Trombopoyetina , Animales , Humanos , Ratones , Ciclo Celular , Microscopía por Crioelectrón , Receptores de Trombopoyetina/genética , Trombopoyesis , Metilación de ADN
6.
Cell Rep ; 42(6): 112657, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339051

RESUMEN

Interleukin-21 (IL-21) plays a critical role in generating immunological memory by promoting the germinal center reaction, yet clinical use of IL-21 remains challenging because of its pleiotropy and association with autoimmune disease. To better understand the structural basis of IL-21 signaling, we determine the structure of the IL-21-IL-21R-γc ternary signaling complex by X-ray crystallography and a structure of a dimer of trimeric complexes using cryo-electron microscopy. Guided by the structure, we design analogs of IL-21 by introducing substitutions to the IL-21-γc interface. These IL-21 analogs act as partial agonists that modulate downstream activation of pS6, pSTAT3, and pSTAT1. These analogs exhibit differential activity on T and B cell subsets and modulate antibody production in human tonsil organoids. These results clarify the structural basis of IL-21 signaling and offer a potential strategy for tunable manipulation of humoral immunity.


Asunto(s)
Centro Germinal , Interleucinas , Humanos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Interleucina-2
7.
Cell Rep ; 42(3): 112201, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36867534

RESUMEN

Janus kinases (JAKs) mediate signal transduction downstream of cytokine receptors. Cytokine-dependent dimerization is conveyed across the cell membrane to drive JAK dimerization, trans-phosphorylation, and activation. Activated JAKs in turn phosphorylate receptor intracellular domains (ICDs), resulting in the recruitment, phosphorylation, and activation of signal transducer and activator of transcription (STAT)-family transcription factors. The structural arrangement of a JAK1 dimer complex with IFNλR1 ICD was recently elucidated while bound by stabilizing nanobodies. While this revealed insights into the dimerization-dependent activation of JAKs and the role of oncogenic mutations in this process, the tyrosine kinase (TK) domains were separated by a distance not compatible with the trans-phosphorylation events between the TK domains. Here, we report the cryoelectron microscopy structure of a mouse JAK1 complex in a putative trans-activation state and expand these insights to other physiologically relevant JAK complexes, providing mechanistic insight into the crucial trans-activation step of JAK signaling and allosteric mechanisms of JAK inhibition.


Asunto(s)
Proteínas de Unión al ADN , Quinasas Janus , Animales , Ratones , Quinasas Janus/metabolismo , Proteínas de Unión al ADN/metabolismo , Microscopía por Crioelectrón , Transactivadores/metabolismo , Janus Quinasa 1/metabolismo , Transducción de Señal , Fosforilación , Janus Quinasa 2/metabolismo , Janus Quinasa 3/metabolismo
8.
Nat Commun ; 14(1): 1797, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002197

RESUMEN

Leptin is an adipocyte-derived protein hormone that promotes satiety and energy homeostasis by activating the leptin receptor (LepR)-STAT3 signaling axis in a subset of hypothalamic neurons. Leptin signaling is dysregulated in obesity, however, where appetite remains elevated despite high levels of circulating leptin. To gain insight into the mechanism of leptin receptor activation, here we determine the structure of a stabilized leptin-bound LepR signaling complex using single particle cryo-EM. The structure reveals an asymmetric architecture in which a single leptin induces LepR dimerization via two distinct receptor-binding sites. Analysis of the leptin-LepR binding interfaces reveals the molecular basis for human obesity-associated mutations. Structure-based design of leptin variants that destabilize the asymmetric LepR dimer yield both partial and biased agonists that partially suppress STAT3 activation in the presence of wild-type leptin and decouple activation of STAT3 from LepR negative regulators. Together, these results reveal the structural basis for LepR activation and provide insights into the differential plasticity of signaling pathways downstream of LepR.


Asunto(s)
Leptina , Receptores de Leptina , Humanos , Leptina/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Obesidad/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(11): e2218238120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893265

RESUMEN

Wnt morphogens are critical for embryonic development and tissue regeneration. Canonical Wnts form ternary receptor complexes composed of tissue-specific Frizzled (Fzd) receptors together with the shared LRP5/6 coreceptors to initiate ß-catenin signaling. The cryo-EM structure of a ternary initiation complex of an affinity-matured XWnt8-Frizzled8-LRP6 complex elucidates the basis of coreceptor discrimination by canonical Wnts by means of their N termini and linker domains that engage the LRP6 E1E2 domain funnels. Chimeric Wnts bearing modular linker "grafts" were able to transfer LRP6 domain specificity between different Wnts and enable non-canonical Wnt5a to signal through the canonical pathway. Synthetic peptides comprising the linker domain serve as Wnt-specific antagonists. The structure of the ternary complex provides a topological blueprint for the orientation and proximity of Frizzled and LRP6 within the Wnt cell surface signalosome.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Proteínas Wnt , Proteínas Wnt/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Transducción de Señal , Receptores Frizzled/metabolismo , Membrana Celular/metabolismo , beta Catenina/metabolismo , Vía de Señalización Wnt
10.
bioRxiv ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-36824799

RESUMEN

Membrane receptor guanylyl cyclases play a role in many important facets of human physiology, from regulating blood pressure to intestinal fluid secretion. The structural mechanisms which influence these important physiological processes have yet to be explored. We present the 3.9 Å resolution cryo-EM structure of the human membrane receptor guanylyl cyclase GC-C in complex with Hsp90 and its co-chaperone Cdc37, providing insight into the mechanism of Cdc37 mediated binding of GC-C to the Hsp90 regulatory complex. As a membrane protein and non-kinase client of Hsp90-Cdc37, this work shows the remarkable plasticity of Cdc37 to interact with a broad array of clients with significant sequence variation. Further, this work shows how membrane receptor guanylyl cyclases hijack the regulatory mechanisms used for active kinases to facilitate their regulation. Given the known druggability of Hsp90, these insights can guide the further development of membrane receptor guanylyl cyclase-targeted therapeutics and lead to new avenues to treat hypertension, inflammatory bowel disease, and other membrane receptor guanylyl cyclase-related conditions.

11.
Nature ; 609(7927): 622-629, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863378

RESUMEN

The IL-17 family of cytokines and receptors have central roles in host defence against infection and development of inflammatory diseases1. The compositions and structures of functional IL-17 family ligand-receptor signalling assemblies remain unclear. IL-17E (also known as IL-25) is a key regulator of type 2 immune responses and driver of inflammatory diseases, such as allergic asthma, and requires both IL-17 receptor A (IL-17RA) and IL-17RB to elicit functional responses2. Here we studied IL-25-IL-17RB binary and IL-25-IL-17RB-IL-17RA ternary complexes using a combination of cryo-electron microscopy, single-molecule imaging and cell-based signalling approaches. The IL-25-IL-17RB-IL-17RA ternary signalling assembly is a C2-symmetric complex in which the IL-25-IL-17RB homodimer is flanked by two 'wing-like' IL-17RA co-receptors through a 'tip-to-tip' geometry that is the key receptor-receptor interaction required for initiation of signal transduction. IL-25 interacts solely with IL-17RB to allosterically promote the formation of the IL-17RB-IL-17RA tip-to-tip interface. The resulting large separation between the receptors at the membrane-proximal level may reflect proximity constraints imposed by the intracellular domains for signalling. Cryo-electron microscopy structures of IL-17A-IL-17RA and IL-17A-IL-17RA-IL-17RC complexes reveal that this tip-to-tip architecture is a key organizing principle of the IL-17 receptor family. Furthermore, these studies reveal dual actions for IL-17RA sharing among IL-17 cytokine complexes, by either directly engaging IL-17 cytokines or alternatively functioning as a co-receptor.


Asunto(s)
Interleucina-17 , Receptores de Interleucina-17 , Microscopía por Crioelectrón , Interleucina-17/química , Interleucina-17/metabolismo , Ligandos , Dominios Proteicos , Multimerización de Proteína , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/ultraestructura , Transducción de Señal , Imagen Individual de Molécula
12.
Elife ; 112022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35579417

RESUMEN

Interleukin 27 (IL-27) is a heterodimeric cytokine that functions to constrain T cell-mediated inflammation and plays an important role in immune homeostasis. Binding of IL-27 to cell surface receptors, IL-27Rα and gp130, results in activation of receptor-associated Janus Kinases and nuclear translocation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT3 transcription factors. Despite the emerging therapeutic importance of this cytokine axis in cancer and autoimmunity, a molecular blueprint of the IL-27 receptor signaling complex, and its relation to other gp130/IL-12 family cytokines, is currently unclear. We used cryogenic-electron microscopy to determine the quaternary structure of IL-27, composed of p28 and Epstein-Barr Virus-Induced 3 (Ebi3) subunits, bound to receptors, IL-27Rα and gp130. The resulting 3.47 Å resolution structure revealed a three-site assembly mechanism nucleated by the central p28 subunit of the cytokine. The overall topology and molecular details of this binding are reminiscent of IL-6 but distinct from related heterodimeric cytokines IL-12 and IL-23. These results indicate distinct receptor assembly mechanisms used by heterodimeric cytokines with important consequences for targeted agonism and antagonism of IL-27 signaling.


Asunto(s)
Receptor gp130 de Citocinas , Interleucina-27 , Receptores de Interleucina , Receptor gp130 de Citocinas/química , Humanos , Interleucina-12 , Interleucina-27/química , Estructura Cuaternaria de Proteína , Receptores de Interleucina/química
13.
Nat Commun ; 12(1): 2775, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986273

RESUMEN

The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of ß-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates.


Asunto(s)
Antibacterianos/farmacología , Pared Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , beta-Lactamas/farmacología , Acetilglucosamina/química , Aldehídos/química , Microscopía por Crioelectrón , Ácidos Murámicos/química , Oligosacáridos/farmacología , Peptidoglicano/biosíntesis , Conformación Proteica , Dominios Proteicos/fisiología
14.
mBio ; 11(6)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144379

RESUMEN

Sporulation-related repeat (SPOR) domains are present in many bacterial cell envelope proteins and are known to bind peptidoglycan. Escherichia coli contains four SPOR proteins, DamX, DedD, FtsN, and RlpA, of which FtsN is essential for septal peptidoglycan synthesis. DamX and DedD may also play a role in cell division, based on mild cell division defects observed in strains lacking these SPOR domain proteins. Here, we show by nuclear magnetic resonance (NMR) spectroscopy that the periplasmic part of DedD consists of a disordered region followed by a canonical SPOR domain with a structure similar to that of the SPOR domains of FtsN, DamX, and RlpA. The absence of DamX or DedD decreases the functionality of the bifunctional transglycosylase-transpeptidase penicillin-binding protein 1B (PBP1B). DamX and DedD interact with PBP1B and stimulate its glycosyltransferase activity, and DamX also stimulates the transpeptidase activity. DedD also binds to PBP1A and stimulates its glycosyltransferase activity. Our data support a direct role of DamX and DedD in enhancing the activity of PBP1B and PBP1A, presumably during the synthesis of the cell division septum.IMPORTANCEEscherichia coli has four SPOR proteins that bind peptidoglycan, of which FtsN is essential for cell division. DamX and DedD are suggested to have semiredundant functions in cell division based on genetic evidence. Here, we solved the structure of the SPOR domain of DedD, and we show that both DamX and DedD interact with and stimulate the synthetic activity of the peptidoglycan synthases PBP1A and PBP1B, suggesting that these class A PBP enzymes act in concert with peptidoglycan-binding proteins during cell division.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Unión a las Penicilinas/metabolismo , Antibacterianos/farmacología , Cefsulodina/farmacología , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Unión Proteica , Conformación Proteica
15.
Nat Commun ; 11(1): 5877, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208735

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively, 11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for subsequent viral assembly and maturation. We have determined X-ray crystallographic structures of this cysteine protease in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product bound state at 2.0 Å resolution by employing an active site mutation (C145A). We characterize the stereochemical features of the acyl-enzyme intermediate including critical hydrogen bonding distances underlying catalysis in the Cys/His dyad and oxyanion hole. We also identify a highly ordered water molecule in a position compatible for a role as the deacylating nucleophile in the catalytic mechanism and characterize the binding groove conformational changes and dimerization interface that occur upon formation of the acyl-enzyme. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for future antiviral therapeutic development including revised molecular docking strategies based on Mpro inhibition.


Asunto(s)
Betacoronavirus/enzimología , Cisteína Endopeptidasas/química , Proteínas no Estructurales Virales/química , Betacoronavirus/química , Sitios de Unión , Dominio Catalítico , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Dimerización , Humanos , Modelos Moleculares , Mutación , Inhibidores de Proteasas/metabolismo , Conformación Proteica , SARS-CoV-2 , Especificidad por Sustrato , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
16.
Structure ; 28(6): 643-650.e5, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32320673

RESUMEN

Peptidoglycan (PG) is an essential component of the bacterial cell wall and is assembled from a lipid II precursor by glycosyltransferase and transpeptidase reactions catalyzed in particular by bifunctional class A penicillin-binding proteins (aPBPs). In the major clinical pathogen Pseudomonas aeruginosa, PBP1B is anchored within the cytoplasmic membrane but regulated by a bespoke outer membrane-localized lipoprotein known as LpoP. Here, we report the structure of LpoP, showing an extended N-terminal, flexible tether followed by a well-ordered C-terminal tandem-tetratricopeptide repeat domain. We show that LpoP stimulates both PBP1B transpeptidase and glycosyltransferase activities in vitro and interacts directly via its C terminus globular domain with the central UB2H domain of PBP1B. Contrary to the situation in E. coli, P. aeruginosa CpoB does not regulate PBP1B/LpoP in vitro. We propose a mechanism that helps to underscore similarities and differences in class A PBP activation across Gram-negative bacteria.


Asunto(s)
Lipoproteínas/química , Lipoproteínas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Membrana Celular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Desplegamiento Proteico
17.
Structure ; 27(7): 1094-1102.e4, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31056420

RESUMEN

Bacteria identify and respond to DNA damage using the SOS response. LexA, a central repressor in the response, has been implicated in the regulation of lysogeny in various temperate bacteriophages. During infection of Bacillus thuringiensis with GIL01 bacteriophage, LexA represses the SOS response and the phage lytic cycle by binding DNA, an interaction further stabilized upon binding of a viral protein, gp7. Here we report the crystallographic structure of phage-borne gp7 at 1.7-Å resolution, and characterize the 4:2 stoichiometry and potential interaction with LexA using surface plasmon resonance, static light scattering, and small-angle X-ray scattering. These data suggest that gp7 stabilizes LexA binding to operator DNA via coordination of the N- and C-terminal domains of LexA. Furthermore, we have found that gp7 can interact with LexA from Staphylococcus aureus, a significant human pathogen. Our results provide structural evidence as to how phage factors can directly associate with LexA to modulate the SOS response.


Asunto(s)
Fagos de Bacillus/genética , Bacillus thuringiensis/genética , Proteínas Bacterianas/química , ADN Bacteriano/química , Serina Endopeptidasas/química , Staphylococcus aureus/genética , Proteínas Reguladoras y Accesorias Virales/química , Secuencia de Aminoácidos , Fagos de Bacillus/metabolismo , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Enlace de Hidrógeno , Lisogenia/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Respuesta SOS en Genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/virología , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo
18.
Nat Commun ; 10(1): 1849, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015395

RESUMEN

The bacterial cell wall plays a crucial role in viability and is an important drug target. In Escherichia coli, the peptidoglycan crosslinking reaction to form the cell wall is primarily carried out by penicillin-binding proteins that catalyse D,D-transpeptidase activity. However, an alternate crosslinking mechanism involving the L,D-transpeptidase YcbB can lead to bypass of D,D-transpeptidation and beta-lactam resistance. Here, we show that the crystallographic structure of YcbB consists of a conserved L,D-transpeptidase catalytic domain decorated with a subdomain on the dynamic substrate capping loop, peptidoglycan-binding and large scaffolding domains. Meropenem acylation of YcbB gives insight into the mode of inhibition by carbapenems, the singular antibiotic class with significant activity against L,D-transpeptidases. We also report the structure of PBP5-meropenem to compare interactions mediating inhibition. Additionally, we probe the interaction network of this pathway and assay beta-lactam resistance in vivo. Our results provide structural insights into the mechanism of action and the inhibition of L,D-transpeptidation, and into YcbB-mediated antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Meropenem/farmacología , Peptidil Transferasas/metabolismo , Resistencia betalactámica/fisiología , Acilación/efectos de los fármacos , Sustitución de Aminoácidos/genética , Antibacterianos/química , Dominio Catalítico/fisiología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Meropenem/química , Simulación de Dinámica Molecular , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/genética , Peptidil Transferasas/aislamiento & purificación , Mapas de Interacción de Proteínas/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
19.
Curr Opin Struct Biol ; 53: 45-58, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29885610

RESUMEN

The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents.


Asunto(s)
Proteínas Bacterianas , Pared Celular/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Peptidoglicano , Ácidos Teicoicos/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/metabolismo , Proteínas de la Membrana/química , Monosacáridos/biosíntesis , Oligopéptidos/biosíntesis , Peptidoglicano/biosíntesis , Peptidoglicano/metabolismo , Estructura Cuaternaria de Proteína , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...