Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol ; 65(6): 987-996, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27587900

RESUMEN

The threat from pests and pathogens to native and commercially planted forest trees is unprecedented and expected to increase under climate change. The degree to which forests respond to threats from pathogens depends on their adaptive capacity, which is determined largely by genetically controlled variation in susceptibility of the individual trees within them and the heritability and evolvability of this trait. The most significant current threat to the economically and ecologically important species Scots pine (Pinus sylvestris) is dothistroma needle blight (DNB), caused by the foliar pathogen Dothistroma septosporum. A progeny-population trial of 4-year-old Scots pine trees, comprising six populations from native Caledonian pinewoods each with three to five families in seven blocks, was artificially inoculated using a single isolate of D. septosporum. Susceptibility to D. septosporum, assessed as the percentage of non-green needles, was measured regularly over a period of 61 days following inoculation, during which plants were maintained in conditions ideal for DNB development (warm; high humidity; high leaf wetness). There were significant differences in susceptibility to D. septosporum among families indicating that variation in this trait is heritable, with high estimates of narrow-sense heritability (0.38-0.75) and evolvability (genetic coefficient of variation, 23.47). It is concluded that native Scots pine populations contain sufficient genetic diversity to evolve lower susceptibility to D. septosporum through natural selection in response to increased prevalence of this pathogen.

4.
Heredity (Edinb) ; 115(2): 125-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24105437

RESUMEN

In forests with gap disturbance regimes, pioneer tree regeneration is typically abundant following stand-replacing disturbances, whether natural or anthropogenic. Differences in pioneer tree density linked to disturbance regime can influence pollinator behaviour and impact on mating patterns and genetic diversity of pioneer populations. Such mating pattern shifts can manifest as higher selfing rates and lower pollen diversity in old growth forest populations. In secondary forest, where more closely related pollen donors occur, an increase in biparental inbreeding is a potential problem. Here, we investigate the consequences of secondary forest colonisation on the mating patterns and genetic diversity of open-pollinated progeny arrays for the long-lived, self-compatible pioneer tree, Vochysia ferruginea, at two Costa Rican sites. Five microsatellite loci were screened across adult and seed cohorts from old growth forest with lower density, secondary forest with higher density, and isolated individual trees in pasture. Progeny from both old growth and secondary forest contexts were predominantly outcrossed (tm=1.00) and experienced low levels of biparental inbreeding (tm-ts=0.00-0.04). In contrast to predictions, our results indicated that the mating patterns of V. ferruginea are relatively robust to density differences between old growth and secondary forest stands. In addition, we observed that pollen-mediated gene flow possibly maintained the genetic diversity of open-pollinated progeny arrays in stands of secondary forest adults. As part of a natural resource management strategy, we suggest that primary forest remnants should be prioritised for conservation to promote restoration of genetic diversity during forest regeneration.


Asunto(s)
Variación Genética , Genética de Población , Polen/genética , Árboles/genética , Costa Rica , ADN de Plantas/genética , Bosques , Genotipo , Magnoliopsida/genética , Repeticiones de Microsatélite , Modelos Genéticos , Densidad de Población , Reproducción/genética , Semillas/genética
5.
Forensic Sci Int Genet ; 7(1): 55-62, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22770645

RESUMEN

Illegal logging is one of the main causes of ongoing worldwide deforestation and needs to be eradicated. The trade in illegal timber and wood products creates market disadvantages for products from sustainable forestry. Although various measures have been established to counter illegal logging and the subsequent trade, there is a lack of practical mechanisms for identifying the origin of timber and wood products. In this study, six nuclear microsatellites were used to generate DNA fingerprints for a genetic reference database characterising the populations of origin of a large set of mahogany (Swietenia macrophylla King, Meliaceae) samples. For the database, leaves and/or cambium from 1971 mahogany trees sampled in 31 stands from Mexico to Bolivia were genotyped. A total of 145 different alleles were found, showing strong genetic differentiation (δ(Gregorious)=0.52, F(ST)=0.18, G(ST(Hedrick))=0.65) and clear correlation between genetic and spatial distances among stands (r=0.82, P<0.05). We used the genetic reference database and Bayesian assignment testing to determine the geographic origins of two sets of mahogany wood samples, based on their multilocus genotypes. In both cases the wood samples were assigned to the correct country of origin. We discuss the overall applicability of this methodology to tropical timber trading.


Asunto(s)
ADN de Plantas/genética , Geografía , Meliaceae/genética , Variación Genética , Repeticiones de Microsatélite/genética
6.
Heredity (Edinb) ; 109(6): 372-82, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22929152

RESUMEN

Drylands are extensive across sub-Saharan Africa, socio-economically and ecologically important yet highly sensitive to environmental changes. Evolutionary history, as revealed by contemporary intraspecific genetic variation, can provide valuable insight into how species have responded to past environmental and population changes and guide strategies to promote resilience to future changes. The gum arabic tree (Acacia senegal) is an arid-adapted, morphologically diverse species native to the sub-Saharan drylands. We used variation in nuclear sequences (internal transcribed spacer (ITS)) and two types of chloroplast DNA (cpDNA) markers (PCR-RFLP, cpSSR) to study the phylogeography of the species with 293 individuals from 66 populations sampled across its natural range. cpDNA data showed high regional and rangewide haplotypic diversity (h(T(cpSSR))=0.903-0.948) and population differentiation (G(ST(RFLP))=0.700-0.782) with a phylogeographic pattern that indicated extensive historical gene flow via seed dispersal. Haplotypes were not restricted to any of the four varieties, but showed significant geographic structure (G(ST(cpSSR))=0.392; R(ST)=0.673; R(ST)>R(ST) (permuted)), with the major division separating East and Southern Africa populations from those in West and Central Africa. Phylogenetic analysis of ITS data indicated a more recent origin for the clade including West and Central African haplotypes, suggesting range expansion in this region, possibly during the Holocene humid period. In conjunction with paleobotanical evidence, our data suggest dispersal to West Africa, and across to the Arabian Peninsula and Indian subcontinent, from source populations located in the East African region during climate oscillations of the Plio-Pleistocene.


Asunto(s)
Acacia , Flujo Génico , Variación Genética , Filogeografía , Acacia/genética , Acacia/fisiología , África del Sur del Sahara , ADN de Cloroplastos/genética , Evolución Molecular , Genética de Población , Haplotipos , Datos de Secuencia Molecular , Senegal
7.
Heredity (Edinb) ; 106(5): 775-87, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20823905

RESUMEN

Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θ(sil)= ~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=-0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (π(tot)=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4N(e) generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role.


Asunto(s)
Demografía , Variación Genética , Genética de Población , Pinus sylvestris/genética , Secuencia de Bases , Simulación por Computador , Frecuencia de los Genes , Geografía , Desequilibrio de Ligamiento , Datos de Secuencia Molecular , Polimorfismo Genético , Escocia , Análisis de Secuencia de ADN
8.
Mol Ecol Resour ; 10(6): 1098-105, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21565124

RESUMEN

This article documents the addition of 396 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anthocidaris crassispina, Aphis glycines, Argyrosomus regius, Astrocaryum sciophilum, Dasypus novemcinctus, Delomys sublineatus, Dermatemys mawii, Fundulus heteroclitus, Homalaspis plana, Jumellea rossii, Khaya senegalensis, Mugil cephalus, Neoceratitis cyanescens, Phalacrocorax aristotelis, Phytophthora infestans, Piper cordulatum, Pterocarpus indicus, Rana dalmatina, Rosa pulverulenta, Saxifraga oppositifolia, Scomber colias, Semecarpus kathalekanensis, Stichopus monotuberculatus, Striga hermonthica, Tarentola boettgeri and Thermophis baileyi. These loci were cross-tested on the following species: Aphis gossypii, Sooretamys angouya, Euryoryzomys russatus, Fundulus notatus, Fundulus olivaceus, Fundulus catenatus, Fundulus majalis, Jumellea fragrans, Jumellea triquetra Jumellea recta, Jumellea stenophylla, Liza richardsonii, Piper marginatum, Piper aequale, Piper darienensis, Piper dilatatum, Rana temporaria, Rana iberica, Rana pyrenaica, Semecarpus anacardium, Semecarpus auriculata, Semecarpus travancorica, Spondias acuminata, Holigarna grahamii, Holigarna beddomii, Mangifera indica, Anacardium occidentale, Tarentola delalandii, Tarentola caboverdianus and Thermophis zhaoermii.

9.
Heredity (Edinb) ; 95(4): 274-80, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16106259

RESUMEN

Since no universal codominant markers are currently available, dominant genetic markers, such as amplified fragment length polymorphism (AFLP), are valuable tools for assessing genetic diversity in tropical trees. However, the measurement of genetic diversity (H) with dominant markers depends on the frequency of null homozygotes (Q) and the fixation index (F) of populations. While Q can be estimated for AFLP loci, F is less accessible. Through a modelling approach, we show that the monolocus estimation of genetic diversity is strongly dependent on the value of F, but that the multilocus diversity estimate is surprisingly robust to variations in F. The robustness of the estimate is due to a mechanistic effect of compensation between negative and positive biases of H by different AFLP loci exhibiting contrasting frequency profiles of Q. The robustness was tested across contrasting theoretical frequency profiles of Q and verified for 10 neotropical species. Practical recommendations for the implementation of this analytical method are given for genetic surveys in tropical trees, where such markers are widely applied.


Asunto(s)
Marcadores Genéticos/genética , Variación Genética , Genética de Población , Modelos Genéticos , Árboles/genética , Genes Dominantes/genética , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Longitud del Fragmento de Restricción , América del Sur , Clima Tropical
10.
Heredity (Edinb) ; 95(4): 281-9, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16030529

RESUMEN

Fine-scale spatial genetic structure (SGS) in natural tree populations is largely a result of restricted pollen and seed dispersal. Understanding the link between limitations to dispersal in gene vectors and SGS is of key interest to biologists and the availability of highly variable molecular markers has facilitated fine-scale analysis of populations. However, estimation of SGS may depend strongly on the type of genetic marker and sampling strategy (of both loci and individuals). To explore sampling limits, we created a model population with simulated distributions of dominant and codominant alleles, resulting from natural regeneration with restricted gene flow. SGS estimates from subsamples (simulating collection and analysis with amplified fragment length polymorphism (AFLP) and microsatellite markers) were correlated with the 'real' estimate (from the full model population). For both marker types, sampling ranges were evident, with lower limits below which estimation was poorly correlated and upper limits above which sampling became inefficient. Lower limits (correlation of 0.9) were 100 individuals, 10 loci for microsatellites and 150 individuals, 100 loci for AFLPs. Upper limits were 200 individuals, five loci for microsatellites and 200 individuals, 100 loci for AFLPs. The limits indicated by simulation were compared with data sets from real species. Instances where sampling effort had been either insufficient or inefficient were identified. The model results should form practical boundaries for studies aiming to detect SGS. However, greater sample sizes will be required in cases where SGS is weaker than for our simulated population, for example, in species with effective pollen/seed dispersal mechanisms.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Demografía , Genética de Población , Modelos Genéticos , Proyectos de Investigación , Árboles/genética , Simulación por Computador , Repeticiones de Microsatélite/genética , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Longitud del Fragmento de Restricción
11.
Mol Ecol ; 12(6): 1451-60, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12755874

RESUMEN

Spanish Cedar (Cedrela odorata L.) is a globally important timber species which has been severely exploited in Mesoamerica for over 200 years. Using polymerase chain reaction-restriction fragment length polymorphisms, its chloroplast (cp) DNA phylogeography was studied in Mesoamerica with samples from 29 populations in six countries. Five haplotypes were characterized, phylogenetically grouped into three lineages (Northern, Central and Southern). Spatial analysis of ordered genetic distance confirmed deviation from a pattern of isolation by distance. The geographically proximate Northern and Central cpDNA lineages were genetically the most differentiated, with the Southern lineage appearing between them on a minimum spanning tree. However, populations possessing Southern lineage haplotypes occupy distinct moist habitats, in contrast to populations possessing Northern and Central lineage haplotypes which occupy drier and more seasonal habitats. Given the known colonization of the proto-Mesoamerican peninsula by South American flora and fauna prior to the formation of the Isthmus of Panama, it seems most likely that the observed population structure in C. odorata results from repeated colonization of Mesoamerica from South American source populations. Such a model would imply an ancient, pre-Isthmian colonization of a dry-adapted type (possessing the Northern lineage or a prototype thereof), with a secondary colonization via the land bridge. Following this, a more recent (possibly post-Pleistocene) expansion of moist-adapted types possessing the Southern lineage from the south fits the known vegetation history of the region.


Asunto(s)
Cedrela/genética , Cedrela/fisiología , ADN de Cloroplastos/genética , Variación Genética , Filogenia , América Central , Geografía , Haplotipos/genética , Modelos Biológicos , Polimorfismo de Longitud del Fragmento de Restricción , Dinámica Poblacional , Especificidad de la Especie
12.
Heredity (Edinb) ; 90(3): 268-75, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12634811

RESUMEN

Fine-scale structure of genetic diversity and gene flow were analysed in three Costa Rican populations of mahogany, Swietenia macrophylla. Population differentiation estimated using AFLPs and SSRs was low (38.3 and 24%) and only slightly higher than previous estimates for Central American populations based on RAPD variation (20%). Significant fine-scale spatial structure was found in all of the surveyed mahogany populations and is probably strongly influenced by the limited seed dispersal range of the species. Furthermore, a survey of progeny arrays from selected mother trees in two of the plots indicated that most pollinations involved proximate trees. These data indicate that very little gene flow, via either pollen or seed, is occurring between blocks of mahogany within a continuous or disturbed forest landscape. Thus, once diversity is removed from a forest population of mahogany, these data suggest that recovery would be difficult via seed or pollen dispersal, and provides an explanation for mahogany's apparent susceptibility to the pressures of logging. Evidence is reviewed from other studies of gene flow and seedling regeneration to discuss alternative extraction strategies that may maintain diversity or allow recovery of genetic resources.


Asunto(s)
Genética de Población , Meliaceae/genética , Evolución Biológica , Variación Genética , Técnica del ADN Polimorfo Amplificado Aleatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...