Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 2): 134777, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153669

RESUMEN

Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.


Asunto(s)
Ferroptosis , Glioblastoma , Hierro , Receptores de Transferrina , Humanos , Receptores de Transferrina/metabolismo , Hierro/metabolismo , Ferroptosis/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Antígenos CD/metabolismo , Antígenos CD/genética , Quelantes del Hierro/uso terapéutico , Quelantes del Hierro/farmacología
2.
Photodiagnosis Photodyn Ther ; 33: 102097, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33232818

RESUMEN

Glioblastoma is the most severe form of brain cancer. Despite multimodal therapy combining surgery, radiotherapy and chemotherapy, prognosis of patients is dismal. It has been observed that the surgical resection guided by photosensitizer fluorescence followed by photodynamic therapy (PDT) prolongs the average survival in patients with glioblastoma. The main problem with all oncological treatments, including PDT, is the presence of resistant cells. The objective of this study was to isolate and perform an initial characterization of human glioblastoma cells resistant to PDT employing methyl-5-aminolevulinic acid. We obtained resistant cells from the T98 G cell line. Resistant populations accumulated less photosensitizer, formed spheroids of higher number of cells, had higher tumorigenic capacity, and expressed higher mRNA levels of fibroblastic growth factor receptor (FGFR), epidermal growth factor receptor (EGFR) and ß-platelet-derived growth factor receptor (ßPDGFR) than parental cells. The studies of glioblastoma resistance to PDT would help to better understand the causes of tumor recurrence after PDT and to develop new therapeutic proposals in this field of oncology.


Asunto(s)
Glioblastoma , Fotoquimioterapia , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Humanos , Recurrencia Local de Neoplasia , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA