Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods ; 191: 107-119, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33838271

RESUMEN

Gene targeting and additive (random) transgenesis have proven to be powerful technologies with which to decipher the mammalian genome. With the advent of CRISPR/Cas9 genome editing, the ability to inactivate or modify the function of a gene has become even more accessible. However, the impact of each generated modification may be different from what was initially desired. Minimal validation of mutant alleles from genetically altered (GA) rodents remains essential to guarantee the interpretation of experimental results. The protocol described here combines design strategies for genomic and functional validation of genetically modified alleles with droplet digital PCR (ddPCR) or quantitative PCR (qPCR) for target DNA or mRNA quantification. In-depth analysis of the results obtained with GA models through the analysis of target DNA and mRNA quantification is also provided, to evaluate which pitfalls can be detected using these two methods, and we propose recommendations for the characterization of different type of mutant allele (knock-out, knock-in, conditional knock-out, FLEx, IKMC model or transgenic). Our results also highlight the possibility that mRNA expression of any mutated allele can be different from what might be expected in theory or according to common assumptions. For example, mRNA analyses on knock-out lines showed that nonsense-mediated mRNA decay is generally not achieved with a critical-exon approach. Likewise, comparison of multiple conditional lines crossed with the same CreERT2 deleter showed that the inactivation outcome was very different for each conditional model. DNA quantification by ddPCR of G0 to G2 generations of transgenic rodents generated by pronuclear injection showed an unexpected variability, demonstrating that G1 generation rodents cannot be considered as established lines.


Asunto(s)
Sistemas CRISPR-Cas , Alelos , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , ADN , Genómica , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , Roedores/genética
2.
Methods ; 191: 95-106, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32721466

RESUMEN

Droplet digital PCR (ddPCR) is a recent method developed for the quantification of nucleic acids sequences. It is an evolution of PCR methodology incorporating two principal differences: a PCR reaction is performed in thousands of water-oil emulsion droplets and fluorescence is measured at the end of PCR amplification. It leads to the precise and reproducible quantification of DNA and RNA sequences. Here, we present quantitative methods for DNA and RNA analysis using Bio-Rad QX100 or QX200 systems, respectively. The aim of these methods is to provide useful molecular tools for validating genetically altered animal models such as those subject to CRISPR/Cas9 genome editing, as well for expression or CNV studies. A standard procedure for simultaneous DNA and RNA extraction adapted for mouse organs is also described. These methods were initially designed for mouse studies but also work for samples from other species like rat or human. In our lab, thousands of samples and hundreds of target genes from genetically altered lines were examined using these methods. This large dataset was analyzed to evaluate technical optimizations and limitations. Finally, we propose additional recommendations to be included in dMIQE (Minimum information for publication of quantitative digital PCR experiments) guidelines when using ddPCR instruments.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , ADN/genética , Ratones , ARN/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA