Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2893, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610200

RESUMEN

Ion stopping in warm dense matter is a process of fundamental importance for the understanding of the properties of dense plasmas, the realization and the interpretation of experiments involving ion-beam-heated warm dense matter samples, and for inertial confinement fusion research. The theoretical description of the ion stopping power in warm dense matter is difficult notably due to electron coupling and degeneracy, and measurements are still largely missing. In particular, the low-velocity stopping range, that features the largest modelling uncertainties, remains virtually unexplored. Here, we report proton energy-loss measurements in warm dense plasma at unprecedented low projectile velocities. Our energy-loss data, combined with a precise target characterization based on plasma-emission measurements using two independent spectroscopy diagnostics, demonstrate a significant deviation of the stopping power from classical models in this regime. In particular, we show that our results are in closest agreement with recent first-principles simulations based on time-dependent density functional theory.

2.
Sci Rep ; 11(1): 6881, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767262

RESUMEN

We report on the development of a highly directional, narrow energy band, short time duration proton beam operating at high repetition rate. The protons are generated with an ultrashort-pulse laser interacting with a solid target and converted to a pencil-like narrow-band beam using a compact magnet-based energy selector. We experimentally demonstrate the production of a proton beam with an energy of 500 keV and energy spread well below 10[Formula: see text], and a pulse duration of 260 ps. The energy loss of this beam is measured in a 2 [Formula: see text]m thick solid Mylar target and found to be in good agreement with the theoretical predictions. The short time duration of the proton pulse makes it particularly well suited for applications involving the probing of highly transient plasma states produced in laser-matter interaction experiments. This proton source is particularly relevant for measurements of the proton stopping power in high energy density plasmas and warm dense matter.

3.
Rev Sci Instrum ; 89(5): 053301, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864825

RESUMEN

Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 µm and a spacing of 500 µm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 µg/cm2 thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.

4.
Nat Commun ; 8: 15693, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569766

RESUMEN

The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.

5.
Phys Rev E ; 96(4-1): 043210, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29347630

RESUMEN

For ion energy loss measurements in plasmas with near solid densities, an indirect laser heating scheme for carbon foils has been developed at GSI Helmholtzzentrum für Schwerionenforschung GmbH (Darmstadt, Germany). To achieve an electron density of 10^{22}cm^{3} and an electron temperature of 10-30eV, two carbon foils with an areal density of 100µg/cm^{2} heated in a double-hohlraum configuration have been chosen. In this paper we present the results of temperature measurements of both primary and secondary hohlraums for two different hohlraum designs. They were heated by the PHELIX laser with a wavelength of 527nm and an energy of 150J in 1.5ns. For this purpose the temperature has been investigated by an x-ray streak camera with a transmission grating as the dispersive element.

6.
Artículo en Inglés | MEDLINE | ID: mdl-26651804

RESUMEN

The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

7.
Phys Rev Lett ; 111(25): 255501, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24483747

RESUMEN

We present the first direct experimental test of the complex ion structure in liquid carbon at pressures around 100 GPa, using spectrally resolved x-ray scattering from shock-compressed graphite samples. Our results confirm the structure predicted by ab initio quantum simulations and demonstrate the importance of chemical bonds at extreme conditions similar to those found in the interiors of giant planets. The evidence presented here thus provides a firmer ground for modeling the evolution and current structure of carbon-bearing icy giants like Neptune, Uranus, and a number of extrasolar planets.

8.
Phys Rev Lett ; 110(11): 115001, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166546

RESUMEN

This Letter reports on the measurement of the energy loss and the projectile charge states of argon ions at an energy of 4 MeV/u penetrating a fully ionized carbon plasma. The plasma of n(e)≈10(20) cm(-3) and T(e)≈180 eV is created by two laser beams at λ(Las)=532 nm incident from opposite sides on a thin carbon foil. The resulting plasma is spatially homogenous and allows us to record precise experimental data. The data show an increase of a factor of 2 in the stopping power which is in very good agreement with a specifically developed Monte Carlo code, that allows the calculation of the heavy ion beam's charge state distribution and its energy loss in the plasma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...