Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 100, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679707

RESUMEN

BACKGROUND: Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival. RESULTS: We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica. We show that P. parasitica expresses AVH195 during the biotrophic phase of plant infection, i.e., the initial phase in which host cells are maintained alive. In tobacco, the effector prevents the initiation of cell death, which is caused by two pathogen-derived effectors and the proapoptotic BAX protein. AVH195 associates with the plant vacuolar membrane system and interacts with Autophagy-related protein 8 (ATG8) isoforms/paralogs. When expressed in cells from the green alga, Chlamydomonas reinhardtii, the effector delays vacuolar fusion and cargo turnover upon stimulation of autophagy, but does not affect algal viability. In Arabidopsis thaliana, AVH195 delays the turnover of ATG8 from endomembranes and promotes plant susceptibility to P. parasitica and the obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis. CONCLUSIONS: Taken together, our observations suggest that AVH195 targets ATG8 to attenuate autophagy and prevent associated host cell death, thereby favoring biotrophy during the early stages of the infection process.


Asunto(s)
Autofagia , Nicotiana , Phytophthora , Enfermedades de las Plantas , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Nicotiana/microbiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Interacciones Huésped-Patógeno
2.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37947721

RESUMEN

Weak fluorescence signals, which are important in research and applications, are often masked by the background. Different amplification techniques are actively investigated. Here, a broadband, geometry-independent and flexible feedback scheme based on the random scattering of dielectric nanoparticles allows the amplification of a fluorescence signal by partial trapping of the radiation within the sample volume. Amplification of up to a factor of 40 is experimentally demonstrated in ultrapure water with dispersed TiO2 nanoparticles (30 to 50 nm in diameter) and fluorescein dye at 200 µmol concentration (pumped with 5 ns long, 3 mJ laser pulses at 490 nm). The measurements show a measurable reduction in linewidth at the emission peak, indicating that feedback-induced stimulated emission contributes to the large gain observed.

3.
Front Immunol ; 13: 903069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325333

RESUMEN

Macrophages from human and mouse skin share phenotypic and functional features, but remain to be characterized in pathological skin conditions. Skin-resident macrophages are known to derive from embryonic precursors or from adult hematopoiesis. In this report, we investigated the origins, phenotypes and functions of macrophage subsets in mouse and human skin and in cutaneous squamous cell carcinoma (cSCC) using the spectral flow cytometry technology that enables cell autofluorescence to be considered as a full-fledged parameter. Autofluorescence identifies macrophage subsets expressing the CD206 mannose receptor in human peri-tumoral skin and cSCC. In mouse, all AF+ macrophages express the CD206 marker, a subset of which also displaying the TIM-4 marker. While TIM-4-CD206+ AF+ macrophages can differentiate from bone-marrow monocytes and infiltrate skin and tumor, TIM-4 identifies exclusively a skin-resident AF+ macrophage subset that can derive from prenatal hematopoiesis which is absent in tumor core. In mouse and human, AF+ macrophages from perilesional skin and cSCC are highly phagocytic cells contrary to their AF- counterpart, thus identifying autofluorescence as a bona fide marker for phagocytosis. Our data bring to light autofluorescence as a functional marker characterizing subsets of phagocytic macrophages in skin and cSCC. Autofluorescence can thus be considered as an attractive marker of function of macrophage subsets in pathological context.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Adulto , Humanos , Animales , Ratones , Carcinoma de Células Escamosas/patología , Neoplasias Cutáneas/patología , Fagocitosis , Macrófagos/patología , Monocitos
4.
Free Radic Biol Med ; 184: 185-195, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390454

RESUMEN

Reactive oxygen species such as hydrogen peroxide (H2O2) are key signaling molecules that control the setup and functioning of Rhizobium-legume symbiosis. This interaction results in the formation of a new organ, the root nodule, in which bacteria enter the host cells and differentiate into nitrogen (N2)-fixing bacteroids. The interaction between Sinorhizobium meliloti and Medicago truncatula is a genetic model to study N2-fixing symbiosis. In previous work, S. meliloti mutants impaired in the antioxidant defense, showed altered symbiotic properties, emphasizing the importance of redox-based regulation in the bacterial partner. However, direct measurements of S. meliloti intracellular redox state have never been performed. Here, we measured dynamic changes of intracellular H2O2 and glutathione redox potential by expressing roGFP2-Orp1 and Grx1-roGFP2 biosensors in S. meliloti. Kinetic analyses of redox changes under free-living conditions showed that these biosensors are suitable to monitor the bacterial redox state in real-time, after H2O2 challenge and in different genetic backgrounds. In planta, flow cytometry and confocal imaging experiments allowed the determination of sensor oxidation state in nodule bacteria. These cellular studies establish the existence of an oxidative shift in the redox status of S. meliloti during bacteroid differentiation. Our findings open up new possibilities for in vivo studies of redox dynamics during N2-fixing symbiosis.


Asunto(s)
Técnicas Biosensibles , Medicago truncatula , Sinorhizobium meliloti , Proteínas Bacterianas/genética , Peróxido de Hidrógeno , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Fijación del Nitrógeno , Oxidación-Reducción , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis/fisiología
5.
J Invest Dermatol ; 141(10): 2369-2379, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33831432

RESUMEN

NK cells and tissue-resident innate lymphoid cells (ILCs) are innate effectors found in the skin. To investigate their temporal dynamics and specific functions throughout the development of cutaneous squamous cell carcinoma (cSCC), we combined transcriptomic and immunophenotyping analyses in mouse and human cSCCs. We identified an infiltration of NK cells and ILC1s as well as the presence of a few ILC3s. Adoptive transfer of NK cells in NK cell‒ and ILC-deficient Nfil3-/- mice revealed a role for NK cells in early control of cSCC. During tumor progression, we identified a population skewing with the infiltration of atypical ILC1 secreting inflammatory cytokines but reduced levels of IFN-γ at the papilloma stage. NK cells and ILC1s were functionally impaired, with reduced cytotoxicity and IFN-γ secretion associated with the downregulation of activating receptors. They also showed a high degree of heterogeneity in mouse and human cSCCs with the expression of several markers of exhaustion, including TIGIT on NK cells and PD-1 and TIM-3 on ILC1s. Our data show an enrichment in inflammatory ILC1 at the precancerous stage together with impaired antitumor functions in NK cells and ILC1 that could contribute to the development of cSCC and thus suggest that future immunotherapies should take both ILC populations into account.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Células Asesinas Naturales/fisiología , Linfocitos/fisiología , Neoplasias Cutáneas/inmunología , Traslado Adoptivo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/patología , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Ratones , Receptor 1 Gatillante de la Citotoxidad Natural/análisis , Estadificación de Neoplasias , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología
6.
Acta Neuropathol ; 141(1): 39-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33079262

RESUMEN

Several lines of recent evidence indicate that the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) could correspond to an etiological trigger of Alzheimer's disease (AD) pathology. Altered mitochondrial homeostasis is considered an early event in AD development. However, the specific contribution of APP-CTFs to mitochondrial structure, function, and mitophagy defects remains to be established. Here, we demonstrate in neuroblastoma SH-SY5Y cells expressing either APP Swedish mutations, or the ß-secretase-derived APP-CTF fragment (C99) combined with ß- and γ-secretase inhibition, that APP-CTFs accumulation independently of Aß triggers excessive mitochondrial morphology alteration (i.e., size alteration and cristae disorganization) associated with enhanced mitochondrial reactive oxygen species production. APP-CTFs accumulation also elicit basal mitophagy failure illustrated by enhanced conversion of LC3, accumulation of LC3-I and/or LC3-II, non-degradation of SQSTM1/p62, inconsistent Parkin and PINK1 recruitment to mitochondria, enhanced levels of membrane and matrix mitochondrial proteins, and deficient fusion of mitochondria with lysosomes. We confirm the contribution of APP-CTFs accumulation to morphological mitochondria alteration and impaired basal mitophagy in vivo in young 3xTgAD transgenic mice treated with γ-secretase inhibitor as well as in adeno-associated-virus-C99 injected mice. Comparison of aged 2xTgAD and 3xTgAD mice indicates that, besides APP-CTFs, an additional contribution of Aß to late-stage mitophagy activation occurs. Importantly, we report on mitochondrial accumulation of APP-CTFs in human post-mortem sporadic AD brains correlating with mitophagy failure molecular signature. Since defective mitochondria homeostasis plays a pivotal role in AD pathogenesis, targeting mitochondrial dysfunctions and/or mitophagy by counteracting early APP-CTFs accumulation may represent relevant therapeutic interventions in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patología , Mitocondrias/patología , Mitocondrias/ultraestructura , Mitofagia/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Autopsia , Línea Celular , Femenino , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Genome Res ; 30(11): 1633-1642, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32973039

RESUMEN

To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.


Asunto(s)
Encéfalo/metabolismo , Separación Celular/métodos , Citometría de Flujo/métodos , Interneuronas/metabolismo , RNA-Seq , Análisis de la Célula Individual , Encéfalo/citología , Agonistas de Aminoácidos Excitadores/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Técnicas de Inactivación de Genes , Interneuronas/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
8.
Cancers (Basel) ; 12(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664318

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) development has been linked to immune dysfunctions but the mechanisms are still unclear. Here, we report a progressive infiltration of tumor-associated neutrophils (TANs) in precancerous and established cSCC lesions from chemically induced skin carcinogenesis. Comparative in-depth gene expression analyses identified a predominant protumor gene expression signature of TANs in lesions compared to their respective surrounding skin. In addition, in vivo depletion of neutrophils delayed tumor growth and significantly increased the frequency of proliferating IFN-γ (interferon-γ)-producing CD8+ T cells. Mechanisms that limited antitumor responses involved high arginase activity, production of reactive oxygen species (ROS) and nitrite (NO), and the expression of programmed death-ligand 1 (PD-L1) on TAN, concomitantly with an induction of PD-1 on CD8+ T cells, which correlated with tumor size. Our data highlight the relevance of targeting neutrophils and PD-L1-PD-1 (programmed death-1) interaction in the treatment of cSCC.

9.
Front Plant Sci ; 11: 137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194584

RESUMEN

Under nitrogen-limiting conditions, legumes are able to interact symbiotically with bacteria of the Rhizobiaceae family. This interaction gives rise to a new organ, named a root nodule. Root nodules are characterized by an increased glutathione (GSH) and homoglutathione (hGSH) content compared to roots. These low molecular thiols are very important in the biological nitrogen fixation. In order to characterize the modification of nodule activity induced by the microsymbiont glutathione deficiency, physiological, biochemical, and gene expression modifications were analyzed in nodules after the inoculation of Medicago truncatula with the SmgshB mutant of Sinorhizobium meliloti which is deficient in GSH production. The decline in nitrogen fixation efficiency was correlated to the reduction in plant shoot biomass. Flow cytometry analysis showed that SmgshB bacteroids present a higher DNA content than free living bacteria. Live/dead microscopic analysis showed an early bacteroid degradation in SmgshB nodules compared to control nodules which is correlated to a lower bacteroid content at 20 dpi. Finally, the expression of two marker genes involved in nitrogen fixation metabolism, Leghemoglobin and Nodule Cysteine Rich Peptide 001, decreased significantly in mutant nodules at 20 dpi. In contrast, the expression of two marker genes involved in the nodule senescence, Cysteine Protease 6 and Purple Acid Protease, increased significantly in mutant nodules at 10 dpi strengthening the idea that an early senescence process occurs in SmgshB nodules. In conclusion, our results showed that bacterial GSH deficiency does not impair bacterial differentiation but induces an early nodule senescence.

10.
Eur Respir J ; 52(4)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30190271

RESUMEN

In line with the pathophysiological continuum described between nose and bronchus in allergic respiratory diseases, we assessed whether nasal epithelium could mirror the Type 2 T-helper cell (Th2) status of bronchial epithelium.Nasal and bronchial cells were collected by brushing from healthy controls (C, n=13), patients with allergic rhinitis and asthma (AR, n=12), and patients with isolated allergic rhinitis (R, n=14). Cellular composition was assessed by flow cytometry, gene expression was analysed by RNA sequencing and Th2, Type 17 T-helper cell (Th17) and interferon (IFN) signatures were derived from the literature.Infiltration by polymorphonuclear neutrophils (PMN) in the nose excluded 30% of the initial cohort. All bronchial samples from the AR group were Th2-high. The gene expression profile of nasal samples from the AR group correctly predicted the paired bronchial sample Th2 status in 71% of cases. Nevertheless, nasal cells did not appear to be a reliable surrogate for the Th2 response, in particular due to a more robust influence of the IFN response in 14 out of 26 nasal samples. The Th2 scores in the nose and bronchi correlated with mast cell count (both p<0.001) and number of sensitisations (p=0.006 and 0.002), while the Th17 scores correlated with PMN count (p=0.006 and 0.003).The large variability in nasal cell composition and type of inflammation restricts its use as a surrogate for assessing bronchial Th2 inflammation in AR patients.


Asunto(s)
Asma/inmunología , Rinitis Alérgica/inmunología , Células Th17/citología , Células Th2/citología , Adulto , Asma/fisiopatología , Líquido del Lavado Bronquioalveolar/citología , Estudios de Casos y Controles , Femenino , Expresión Génica , Humanos , Inflamación/inmunología , Interferones/metabolismo , Masculino , Líquido del Lavado Nasal/citología , Mucosa Respiratoria/metabolismo , Rinitis Alérgica/fisiopatología , Análisis de Secuencia de ARN , Células Th17/inmunología , Células Th2/inmunología , Adulto Joven
11.
Med Sci (Paris) ; 34(5): 439-447, 2018 May.
Artículo en Francés | MEDLINE | ID: mdl-29900847

RESUMEN

The last decade has been an era of accelerated technological progress for flow cytometry. New technologies have been developed such as mass cytometry in which standard fluorochromes have been replaced by lanthanide-based non-radioactive metals and by spectral cytometry that measures the complete fluorescence spectrum. In this review, we schematically describe conventional, mass and spectral cytometry and present the plus and minus of each technology.


Asunto(s)
Citometría de Flujo/tendencias , Colorantes Fluorescentes/química , Luz , Espectrometría de Masas , Animales , Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Fluorescencia , Colorantes Fluorescentes/farmacología , Humanos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Análisis Espectral/instrumentación , Análisis Espectral/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-29950983

RESUMEN

Living in an enriched environment (EE) benefits health by acting synergistically on various biological systems including the immune and the central nervous systems. The dialog between the brain and the immune cells has recently gained interest and is thought to play a pivotal role in beneficial effects of EE. Recent studies show that T lymphocytes have an important role in hippocampal plasticity, learning, and memory, although the precise mechanisms by which they act on the brain remain elusive. Using a mouse model of EE, we show here that CD4+ T cells are essential for spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. However, CD4+ lymphocytes do not influence EE-induced neurogenesis in the DG of the hippocampus, by contrast to what we previously demonstrated for CD8+ T cells. Importantly, CD4+ T cells located in the choroid plexus have a specific transcriptomic signature as a function of the living environment. Our study highlights the contribution of CD4+ T cells in the brain plasticity and function.

13.
Brain Behav Immun ; 69: 235-254, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29175168

RESUMEN

Enriched environment (EE) induces plasticity changes in the brain. Recently, CD4+ T cells have been shown to be involved in brain plasticity processes. Here, we show that CD8+ T cells are required for EE-induced brain plasticity in mice, as revealed by measurements of hippocampal volume, neurogenesis in the DG of the hippocampus, spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. As a consequence, EE-induced behavioral benefits depend, at least in part, on CD8+ T cells. In addition, we show that spleen CD8+ T cells from mice housed in standard environment (SE) and EE have different properties in terms of 1) TNFα release after in vitro CD3/CD28 or PMA/Iono stimulation 2) in vitro proliferation properties 3) CD8+ CD44+ CD62Llow and CD62Lhi T cells repartition 4) transcriptomic signature as revealed by RNA sequencing. CD8+ T cells purified from the choroid plexus of SE and EE mice also exhibit different transcriptomic profiles as highlighted by single-cell mRNA sequencing. We show that CD8+ T cells are essential mediators of beneficial EE effects on brain plasticity and cognition. Additionally, we propose that EE differentially primes CD8+ T cells leading to behavioral improvement.


Asunto(s)
Conducta Animal/fisiología , Linfocitos T CD8-positivos/metabolismo , Ambiente , Hipocampo/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Animales , Proliferación Celular/fisiología , Conducta Alimentaria/fisiología , Femenino , Ratones , Actividad Motora/fisiología
14.
Front Cell Neurosci ; 11: 352, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29184485

RESUMEN

We recently reported that increased levels of Adiponectin (ApN) in the brain led to microglia phenotype and activation state regulation, thus reducing both global brain inflammation and depressive-like behaviors in mice. Apart from this, little is known on ApN molecular effects on microglia, although these cells are crucial in both physiological and pathological processes. Here we fill this gap by studying the effects and targets of ApN toward neuroinflammation. Our findings suggest that ApN deficiency in mice leads to a higher sensitivity of mice to neuroinflammation that is due to enhanced microglia responsiveness to a pro-inflammatory challenge. Moreover, we show that globular ApN (gApN) exerts direct in vivo anti-inflammatory actions on microglia by reducing IL-1ß, IL-6, and TNFα synthesis. In vitro, gApN anti-inflammatory properties are confirmed in brain-sorted microglia, primary cultured and microglia cell line (BV2), but are not observed on astrocytes. Our results also show that gApN blocks LPS-induced nitrosative and oxidative stress in microglia. Finally, we demonstrate for the first time that these anti-inflammatory and anti-oxidant actions of gApN on microglia are mediated through an AdipoR1/NF-κB signaling pathway.

15.
PLoS Genet ; 13(6): e1006777, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28594822

RESUMEN

Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.


Asunto(s)
Variación Genética , Genoma de los Helmintos , Hibridación Genética , Poliploidía , Reproducción Asexuada , Tylenchoidea/genética , Animales , Elementos Transponibles de ADN , Genoma Mitocondrial , Polimorfismo Genético , Selección Genética
16.
Plant Cell Environ ; 40(7): 1174-1188, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28103637

RESUMEN

Cell cycle control in galls provoked by root-knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes - from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Proteínas Portadoras/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Tylenchoidea/patogenicidad , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular , Núcleo Celular/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos/genética , Leupeptinas/farmacología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Tumores de Planta/genética , Plantas Modificadas Genéticamente , Ploidias , Regiones Promotoras Genéticas , Tylenchoidea/fisiología
17.
Curr Biol ; 27(2): 250-256, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28017611

RESUMEN

Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Bacterias Fijadoras de Nitrógeno/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Sinorhizobium meliloti/crecimiento & desarrollo , Tiorredoxinas/antagonistas & inhibidores , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Bacterias Fijadoras de Nitrógeno/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Sinorhizobium meliloti/efectos de los fármacos , Simbiosis
18.
EMBO Rep ; 17(12): 1738-1752, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733491

RESUMEN

Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.


Asunto(s)
Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Inflamación/metabolismo , Melaninas/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Transducción de Señal , Animales , Quimiocina CCL2/deficiencia , Quimiocina CCL2/inmunología , Citocinas/biosíntesis , Citocinas/genética , Citocinas/inmunología , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/inmunología , Conducta de Enfermedad , Lipopolisacáridos/inmunología , Melaninas/genética , Melaninas/inmunología , Ratones , Neuronas/inmunología , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/inmunología , Receptores CCR2/metabolismo , Pérdida de Peso
19.
Brain Behav Immun ; 50: 275-287, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26209808

RESUMEN

Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1ß, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice.


Asunto(s)
Adiponectina/metabolismo , Depresión/metabolismo , Encefalitis/metabolismo , Ambiente , Hipocampo/metabolismo , Hipotálamo/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Adiponectina/administración & dosificación , Adiponectina/genética , Animales , Corticosterona/administración & dosificación , Citocinas/metabolismo , Depresión/inducido químicamente , Depresión/complicaciones , Encefalitis/complicaciones , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , ARN Mensajero/metabolismo
20.
Oncotarget ; 6(26): 22282-97, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26068979

RESUMEN

Multidrug resistance has appeared to mitigate the efficiency of anticancer drugs and the possibility of successful cancer chemotherapy. The Hedgehog receptor Patched is a multidrug transporter expressed in several cancers and as such it represents a new target to circumvent chemotherapy resistance. We report herein that paniceins and especially panicein A hydroquinone, natural meroterpenoids produced by the Mediterranean sponge Haliclona (Soestella) mucosa, inhibit the doxorubicin efflux activity of Patched and enhance the cytotoxicity of this chemotherapeutic agent on melanoma cells in vitro. These results are supported by the molecular docking performed on the structure of the bacterial drug efflux pump AcrB and on the Patched model built from AcrB structure. Docking calculations show that panicein A hydroquinone interacts with AcrB and Patched model close to the doxorubicin binding site. This compound thus appears as the first antagonist of the doxorubicin efflux activity of Patched. The use of inhibitors of Patched drug efflux activity in combination with classical chemotherapy could represent a novel approach to reduce tumor drug resistance, recurrence and metastasis.


Asunto(s)
Benzoquinonas/farmacología , Doxorrubicina/farmacología , Melanoma/tratamiento farmacológico , Animales , Benzoquinonas/química , Línea Celular Tumoral , Doxorrubicina/farmacocinética , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Melanoma/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Receptores Patched , Poríferos/química , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...