Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 258: 121744, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754301

RESUMEN

Replacing petroleum-based plastics with biodegradable polymers is a major challenge for modern society especially for food packaging applications. To date, poly(lactic acid) represents 25 % of the total biodegradable plastics and it is estimated that, in the future, it could become the main contributor to the biodegradable plastics industry. Anaerobic digestion is an interesting way for the poly(lactic acid) end of life, even if its biodegradability is limited in mesophilic conditions. The aims of this study were to identify the best pre-treatment for maximizing the methane yield, minimizing the anaerobic digestion duration and limiting residual plastic fragments in the digestate. A systematic comparison was carried out between thermal, chemical, and thermo-chemical pre-treatment. Pre-treatment with 4 M KOH for 48 h at 35°C was effective in improving the mesophilic anaerobic digestion of the poly(lactic acid). Such pre-treatment allows obtaining 90 % of the theoretical methane potential, in 24 - 30 days. Importantly, such pre-treatment completely solubilized the poly(lactic acid), leaving no solid residues in the digestate. In addition, using KOH permits to avoid the sodication of the soil due to the digestate application as fertilizer.

2.
J Hazard Mater ; 443(Pt A): 130208, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36308937

RESUMEN

Biodegradable plastics, if they are not properly managed at their end-of-life, can have the same hazardous environmental consequences as conventional plastics. This study investigates the treatment of the main biodegradable plastics under mesophilic and thermophilic anaerobic digestion using biochemical methane potential test and the microorganisms involved in the process using amplicon sequencing of the 16 S rRNA. Here we showed that, only PHB and TPS undergone important and rapid biodegradation under mesophilic condition (38 °C). By contrast, PCL and PLA exhibited very low biodegradation rate as 500 days were required to reach the ultimate methane yield. Little or no degradation occurred for PBAT and PBS at 38 °C. Under thermophilic conditions (58 °C), TPS, PHB, and PLA reached high levels of biodegradation in a relatively short period (< 100 d). While PBS, PBAT, and PCL could not be converted into methane at 58 °C. PHB degraders (Enterobacter and Cupriavidus) and lactate-utilizing bacteria (Moorella and Tepidimicrobium) appeared to play an important role in the PHB and PLA degradation, respectively. This work not only provides crucial data on the anaerobic digestion of the main biodegradable plastics but also enriches the understanding of the microorganisms involved in this process, which are of great importance for future development of the treatment of biodegradable plastics in anaerobic digestion systems.


Asunto(s)
Plásticos Biodegradables , Microbiota , Anaerobiosis , Reactores Biológicos , Biodegradación Ambiental , Metano , Plásticos , Poliésteres
3.
Bioresour Technol ; 369: 128313, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36375703

RESUMEN

The development of selective biowaste collection in most European countries provides new opportunities for the anaerobic digestion sector. In parallel, extensive development of biodegradable plastics like polylactic-acid (PLA) and polyhydroxybutyrate (PHB), which facilitates the replacement of conventional plastics, has taken place in the past decade. This study investigated anaerobic co-digestion in semi-continuous reactors of biowastes (75 % Volatil Solids) and biodegradable plastics (25 % Volatil Solids, PLA and PHB). PHB was estimated to be fully biodegraded in the reactors. By contrast, PLA accumulated in the reactor, and an average biodegradation of 47.6 ± 17.9 % was estimated during the third hydraulic retention time. Pretreatment of PLA, by thermo-alkaline hydrolysis at 70 °C, with 2.5 w/v of Ca(OH)2 for 48 h, improved the biodegradation yield of PLA to 77.5 ± 9.3 %. Finally, it was highlighted that PLA or PHB addition to the feed did not further affect the agronomic properties of the digestate.


Asunto(s)
Plásticos Biodegradables , Reactores Biológicos , Poliésteres , Plásticos , Digestión , Anaerobiosis , Metano
4.
J Environ Manage ; 324: 116369, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202034

RESUMEN

The influence of the inoculum-substrate ratio (ISR) on the mesophilic and thermophilic biochemical methane potential test of two biodegradable plastics was evaluated. Poly(lactic acid) (PLA) and polyhydroxybutyrate (PHB) were selected for this study, the first for being recalcitrant to mesophilic anaerobic digestion (AD) and the second, by contrast, for being readily biodegradable. Several ISRs, calculated on the basis of volatile solids (VS), were tested: 1, 2, 2.85, 4, and 10 g(VS of inoculum).g(VS of substrate)-1. A high ISR was associated with an enhanced methane production rate (i.e., biodegradation kinetics). However, the ultimate methane production did not change, except when inhibition was observed. Indeed, applying the lowest ISR to readily biodegradable plastics such as PHB resulted in inhibition of methane production. Based on these experiments, in order to have reproducible degradation kinetics and optimal methane production, an ISR between 2.85 and 4 is recommended for biodegradable plastics. The active microbial communities were analyzed, and the active bacteria differed depending on the plastic digested (PLA versus PHB) and the temperature of the process (mesophilic versus thermophilic). Previously identified PHB degraders (Ilyobacter delafieldii and Enterobacter) were detected in PHB-fed reactors. Thermogutta and Tepidanaerobacter were detected during the thermophilic AD of PLA, and they are probably involved in PLA hydrolysis and lactate conversion, respectively.


Asunto(s)
Plásticos Biodegradables , Microbiota , Metano/metabolismo , Anaerobiosis , Plásticos Biodegradables/metabolismo , Reactores Biológicos , Poliésteres/metabolismo , Aguas del Alcantarillado/microbiología
5.
Biotechnol Adv ; 56: 107916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35122986

RESUMEN

Growing concern regarding non-biodegradable plastics and the impact of these materials on the environment has promoted interest in biodegradable plastics. The intensification of separate biowastes collection in most European countries has also contributed to the development of biodegradable plastics, and the subject of their end-of-life is becoming a key issue. To date, there has been relatively little research to evaluate the biodegradability of biodegradable plastics by anaerobic digestion (AD) compared to industrial and home composting. However, anaerobic digestion is a particularly promising strategy for treating biodegradable organic wastes in the context of circular waste management. This critical review aims to provide an in-depth update of anaerobic digestion of biodegradable plastics by providing a summary of the literature regarding process performance, parameters affecting biodegradability, the microorganisms involved, and some of the strategies (e.g., pretreatment, additives, and inoculum acclimation) used to enhance the degradation rate of biodegradable plastics. In addition, a critical section is dedicated to suggestions and recommendations for the development of biodegradable plastics sector and their treatment in anaerobic digestion.


Asunto(s)
Plásticos Biodegradables , Administración de Residuos , Anaerobiosis , Muerte , Humanos
6.
Chemosphere ; 297: 133986, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35176299

RESUMEN

To date, the introduction of biodegradable plastics such as PLA in anaerobic digestion systems has been limited by a very low rate of biodegradation. To overcome these limitations, pretreatment technologies can be applied. In this study, the impact of pretreatments (mechanical, thermal, thermo-acid, and thermo-alkaline) was investigated. Mechanical pretreatment of PLA improved its biodegradation rate but did not affect the ultimate methane potential (430-461 NL CH4 kg-1 VS). In parallel, thermal and thermo-acid pretreatments exhibited a similar trend for PLA solubilization. Both of these pretreatments only achieved substantial solubilization (>60%) at higher temperatures (120 and 150 °C). At lower temperatures (70 and 90 °C), negligible solubilization (between 1 and 6%) occurred after 48 h. By contrast, coupling of thermal and alkaline pretreatment significantly increased solubilization at the lower temperatures (70 and 90 °C). In terms of biodegradation, thermo-alkaline pretreatment (with 5% w/v Ca(OH)2) of PLA resulted in a similar methane potential (from 325 to 390 NL CH4 kg-1 VS) for 1 h at 150 °C, 6 h at 120 °C, 24 h at 90 °C, and 48 h at 70 °C. Reduction of the Ca(OH)2 concentration (from 5% to 0.5% w/v) highlighted that a concentration of 2.5% w/v was sufficient to achieve a substantial level of biodegradation. Pretreatment at 70 and 90 °C using 2.5% w/v Ca(OH)2 for 48 h resulted in biodegradation yields of 73% and 68%, respectively. Finally, a good correlation (R2 = 0.90) was found between the PLA solubilization and its biodegradation.


Asunto(s)
Metano , Poliésteres , Anaerobiosis , Biodegradación Ambiental , Metano/metabolismo , Poliésteres/metabolismo , Aguas del Alcantarillado
7.
Sci Total Environ ; 784: 146972, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33892320

RESUMEN

Biodegradable plastics market is increasing these last decades, including for coffee capsules. Anaerobic digestion, as a potential end-of-life scenario for plastic waste, has to be investigated. For this purpose, mesophilic (38 °C) and thermophilic (58 °C) anaerobic digestion tests on three coffee capsules made up with biodegradable plastic (Beanarella®, Launay® or Tintoretto®) and spent coffee (control) were compared by their methane production and the microbial communities active during the process. Mesophilic biodegradation of the capsules was slow and did not reach completion after 100 days, methane production ranged between 67 and 127 NL (CH4) kg-1 (VS). Thermophilic anaerobic digestion resulted in a better biodegradation and reached completion around 100 days, methane productions were between 257 and 294 NL (CH4) kg-1 (VS). The microbial populations from the reactors fed with plastics versus spent coffee grounds were significantly different, under both the mesophilic and the thermophilic conditions. However, the different biodegradable plastics only had a small impact on the main microbial community composition at a similar operational temperature and sampling time. Interestingly, the genus Tepidimicrobium was identified as a potential key microorganisms involved in the thermophilic conversion of biodegradable plastic in methane.


Asunto(s)
Reactores Biológicos , Microbiota , Anaerobiosis , Cápsulas , Café , Metano , Aguas del Alcantarillado , Temperatura
8.
J Environ Manage ; 250: 109464, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31525695

RESUMEN

Chemical oxygen demand (COD) is an essential parameter in waste management, particularly for monitoring bioprocess such as anaerobic digestion. Indeed, chemical oxygen demand (COD) is a key parameter that can prove useful for the evaluation of waste biodegradability and to evaluate mass and energetic balances of the overall process. In this study, an adapted method to determine the COD of solid agricultural wastes was developed. This method combined a double acid hydrolysis of the solid waste materials followed by commercial COD tubes analysis. This method was compared to direct sampling after a standard dilution (3.5 g TS.L-1) and analysis in commercial COD tubes. The method developed in this study allowed the COD of nine agricultural wastes to be accurately predicted, with an absolute error of 7% compared to the theoretical COD. In comparison, the method with only a prior water dilution resulted in higher absolute errors of 36% and 31% when sampling was performed with pipette tips and cut pipette tips, respectively.


Asunto(s)
Residuos Sólidos , Administración de Residuos , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Hidrólisis , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...