Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(18): 6789-6799, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725500

RESUMEN

Prostate-specific membrane antigen (PSMA) is a tumor-associated protein that has been successfully targeted with small organic ligands and monoclonal antibodies. Pluvicto™ is a PSMA-targeted radioligand therapeutic (RLT) recently approved by the FDA for the treatment of metastatic castration-resistant prostate cancer (2022 FDA marketing authorization). Although a large Phase III clinical trial (VISION trial) demonstrated clinical benefits in patients treated with Pluvicto™, the therapeutic window of the drug is narrowed by its undesired accumulation in healthy organs. Glutamate carboxypeptidase III (GCPIII), an enzyme sharing 70% identity with PSMA, may be responsible for the off-target accumulation of PSMA-RLTs in salivary glands and kidneys. In this work, we designed and synthesized affinity and selectivity maturation DNA-encoded chemical libraries (ASM-DELs) comprising 18'284'658 compounds that were screened in parallel against PSMA and GCPIII with the aim to identify potent and selective PSMA ligands for tumor-targeting applications. Compound A70-B104 was isolated as the most potent and selective ligand (KD of 900 pM for PSMA, KD of 40 nM for GCPIII). 177Lu-A70-B104-DOTA, a radiolabeled derivative of compound A70-B104, presented selective accumulation in PSMA-positive cancer lesions (i.e., 7.4% ID g-1, 2 hour time point) after systemic administration in tumor-bearing mice. The results of autoradiography experiments showed that 177Lu-A70-B104-DOTA selectively binds to PSMA-positive cancer tissues, while negligible binding on human salivary glands was observed.

2.
J Med Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716576

RESUMEN

Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38563883

RESUMEN

PURPOSE: Pluvicto™ ([177Lu]Lu-PSMA-617), a radioligand therapeutic targeting prostate-specific membrane antigen (PSMA), has been recently approved for the treatment of metastatic castration-resistant prostate cancer (mCRPR). The drug suffers from salivary gland and kidney uptake that prevents its dose escalation to potentially curative doses. In this work, we sought to potentiate the in vivo anti-cancer activity of Pluvicto™ by combining it with L19-IL2, a clinical-stage investigational medicinal product based on tumor-targeted interleukin-2. METHODS: We established a new PSMA-expressing model (HT-1080.hPSMA) and validated it using a fluoresceine analogue of PSMA-617 (compound 1). The HT-1080.hPSMA model was used to study the saturation and tumor retention of Pluvicto™ (compound 2) and to run combination therapy studies with L19-IL2. To complement our understanding of the mechanism of action of this novel combination, we conducted proteomics experiments on tumor samples after therapy with Pluvicto™ alone or in combination with the immunocytokine. RESULTS: High, selective, and long-lived tumor uptake was observed for Pluvicto™ (2) in the novel HT-1080.hPSMA model. Therapy studies in HT-1080.hPSMA tumor-bearing mice revealed that the combination of Pluvicto™ (2) plus L19-IL2 mediated curative and durable responses in all animals. Potent in vivo anti-cancer activity was observed solely for the combination modality, at doses that were well tolerated by treated animals. Proteomics studies indicated that L19-IL2 boosts the activation of the immune system in animals pre-treated with Pluvicto™. CONCLUSION: The therapeutic efficacy of Pluvicto™ at low radioactive doses can be effectively enhanced by the combination with L19-IL2. Our findings warrant further clinical exploration of this novel combination modality.

4.
J Control Release ; 367: 779-790, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346501

RESUMEN

Small molecule-drug conjugates (SMDCs) are increasingly considered as a therapeutic alternative to antibody-drug conjugates (ADCs) for cancer therapy. OncoFAP is an ultra-high affinity ligand of Fibroblast Activation Protein (FAP), a stromal tumor-associated antigen overexpressed in a wide variety of solid human malignancies. We have recently reported the development of non-internalizing OncoFAP-based SMDCs, which are activated by FAP thanks to selective proteolytic cleavage of the -GlyPro- linker with consequent release of monomethyl auristatin E (MMAE) in the tumor microenvironment. In this article, we describe the generation and the in vivo characterization of FAP-cleavable OncoFAP-drug conjugates based on potent topoisomerase I inhibitors (DXd, SN-38, and exatecan) and an anti-tubulin payload (MMAE), which are already exploited in clinical-stage and approved ADCs. The Glycine-Proline FAP-cleavable technology was directly benchmarked against linkers found in Adcetris™, Enhertu™, and Trodelvy™ structures by means of in vivo therapeutic experiments in mice bearing tumors with cellular or stromal FAP expression. OncoFAP-GlyPro-Exatecan and OncoFAP-GlyPro-MMAE emerged as the most efficacious anti-cancer therapeutics against FAP-positive cellular models. OncoFAP-GlyPro-MMAE exhibited a potent antitumor activity also against stromal models, and was therefore selected for clinical development.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Humanos , Animales , Ratones , Preparaciones Farmacéuticas , Tubulina (Proteína) , Microambiente Tumoral , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Camptotecina/uso terapéutico , Línea Celular Tumoral
5.
Front Pharmacol ; 14: 1320524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125888

RESUMEN

Immune-stimulating antibody conjugates (ISACs) equipped with imidazoquinoline (IMD) payloads can stimulate endogenous immune cells to kill cancer cells, ultimately inducing long-lasting anticancer effects. A novel ISAC was designed, featuring the IMD Resiquimod (R848), a tumor-targeting antibody specific for Carbonic Anhydrase IX (CAIX) and the protease-cleavable Val-Cit-PABC linker. In vitro stability analysis showed not only R848 release in the presence of the protease Cathepsin B but also under acidic conditions. The ex vivo mass spectrometry-based biodistribution data confirmed the low stability of the linker-drug connection while highlighting the selective accumulation of the IgG in tumors and its long circulatory half-life.

6.
Chem Sci ; 14(43): 12026-12033, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969600

RESUMEN

DNA-encoded chemical libraries (DELs) are powerful drug discovery tools, enabling the parallel screening of millions of DNA-barcoded compounds. We investigated how the DEL input affects the hit discovery rate in DEL screenings. Evaluation of selection fingerprints revealed that the use of approximately 105 copies of each library member is required for the confident identification of nanomolar hits, using generally applicable methodologies.

7.
J Nucl Med ; 64(12): 1934-1940, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734838

RESUMEN

We studied the antitumor efficacy of a combination of 177Lu-labeled radioligand therapeutics targeting the fibroblast activation protein (FAP) (OncoFAP and BiOncoFAP) with the antibody-cytokine fusion protein L19-interleukin 2 (L19-IL2) providing targeted delivery of interleukin 2 to tumors. Methods: The biodistribution of 177Lu-OncoFAP and 177Lu-BiOncoFAP at different molar amounts (3 vs. 250 nmol/kg) of injected ligand was studied via SPECT/CT in mice bearing subcutaneous HT-1080.hFAP tumors, and self-absorbed tumor and organ doses were calculated. The in vivo anticancer effect of 5 MBq of the radiolabeled preparations was evaluated as monotherapy or in combination with L19-IL2 in subcutaneously implanted HT-1080.hFAP and SK-RC-52.hFAP tumors. Tumor samples from animals treated with 177Lu-BiOncoFAP, L19-IL2, or both were analyzed by mass spectrometry-based proteomics to identify therapeutic signatures on cellular and stromal markers of cancer and on immunomodulatory targets. Results: 177Lu-BiOncoFAP led to a significantly higher self-absorbed dose in FAP-positive tumors (0.293 ± 0.123 Gy/MBq) than did 177Lu-OncoFAP (0.157 ± 0.047 Gy/MBq, P = 0.01) and demonstrated favorable tumor-to-organ ratios at high molar amounts of injected ligand. Administration of L19-IL2 or 177Lu-BiOncoFAP as single agents led to cancer cures in only a limited number of treated animals. In 177Lu-BiOncoFAP-plus-L19-IL2 combination therapy, complete remissions were observed in all injected mice (7/7 complete remissions for the HT-1080.hFAP model, and 4/4 complete remissions for the SK-RC-52.hFAP model), suggesting therapeutic synergy. Proteomic studies revealed a mechanism of action based on the activation of natural killer cells, with a significant enhancement of the expression of granzymes and perforin 1 in the tumor microenvironment after combination treatment. Conclusion: The combination of OncoFAP-based radioligand therapeutics with concurrent targeting of interleukin 2 shows synergistic anticancer effects in the treatment of FAP-positive tumors. This experimental finding should be corroborated by future clinical studies.


Asunto(s)
Interleucina-2 , Neoplasias , Animales , Ratones , Interleucina-2/uso terapéutico , Distribución Tisular , Ligandos , Proteómica , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
8.
Bioconjug Chem ; 34(7): 1205-1211, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37399501

RESUMEN

We present the first in vivo comparative evaluation of chemically defined antibody-drug conjugates (ADCs), small molecule-drug conjugates (SMDCs), and peptide-drug conjugates (PDCs) targeting and activated by fibroblast activation protein (FAP) in solid tumors. Both the SMDC (OncoFAP-Gly-Pro-MMAE) and the ADC (7NP2-Gly-Pro-MMAE) candidates delivered high amounts of active payload (i.e., MMAE) selectively at the tumor site, thus producing a potent antitumor activity in a preclinical cancer model.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Fibroblastos , Oligopéptidos , Péptidos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Chem ; 15(10): 1431-1443, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37400597

RESUMEN

DNA-encoded chemical libraries (DELs) consist of large chemical compound collections individually linked to DNA barcodes, facilitating pooled construction and screening. However, screening campaigns often fail if the molecular arrangement of the building blocks is not conducive to an efficient interaction with a protein target. Here we postulated that the use of rigid, compact and stereo-defined central scaffolds for DEL synthesis may facilitate the discovery of very specific ligands capable of discriminating between closely related protein targets. We synthesized a DEL comprising 3,735,936 members, featuring the four stereoisomers of 4-aminopyrrolidine-2-carboxylic acid as central scaffolds. The library was screened in comparative selections against pharmaceutically relevant targets and their closely related protein isoforms. Hit validation results revealed a strong impact of stereochemistry, with large affinity differences between stereoisomers. We identified potent isozyme-selective ligands against multiple protein targets. Some of these hits, specific to tumour-associated antigens, demonstrated tumour-selective targeting in vitro and in vivo. Collectively, constructing DELs with stereo-defined elements contributed to high library productivity and ligand selectivity.

10.
ACS Omega ; 8(28): 25090-25100, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483198

RESUMEN

DNA-Encoded Chemical Libraries (DELs) have emerged as efficient and cost-effective ligand discovery tools, which enable the generation of protein-ligand interaction data of unprecedented size. In this article, we present an approach that combines DEL screening and instance-level deep learning modeling to identify tumor-targeting ligands against carbonic anhydrase IX (CAIX), a clinically validated marker of hypoxia and clear cell renal cell carcinoma. We present a new ligand identification and hit-to-lead strategy driven by machine learning models trained on DELs, which expand the scope of DEL-derived chemical motifs. CAIX-screening datasets obtained from three different DELs were used to train machine learning models for generating novel hits, dissimilar to elements present in the original DELs. Out of the 152 novel potential hits that were identified with our approach and screened in an in vitro enzymatic inhibition assay, 70% displayed submicromolar activities (IC50 < 1 µM). To generate lead compounds that are functionalized with anticancer payloads, analogues of top hits were prioritized for synthesis based on the predicted CAIX affinity and synthetic feasibility. Three lead candidates showed accumulation on the surface of CAIX-expressing tumor cells in cellular binding assays. The best compound displayed an in vitro KD of 5.7 nM and selectively targeted tumors in mice bearing human renal cell carcinoma lesions. Our results demonstrate the synergy between DEL and machine learning for the identification of novel hits and for the successful translation of lead candidates for in vivo targeting applications.

12.
Eur J Nucl Med Mol Imaging ; 50(3): 957-961, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184692

RESUMEN

PURPOSE: Recently, Pluvicto™ ([177Lu]Lu-PSMA-617), a small-molecule prostate-specific membrane antigen (PSMA) radioligand therapeutic, has been approved by the FDA in metastatic castration-resistant prostate cancer. Pluvicto™ and other PSMA-targeting radioligand therapeutics (RLTs) have shown side effects due to accumulation in certain healthy tissues, such as salivary glands and kidney. Until now, the molecular mechanism underlying the undesired accumulation of PSMA-targeting RLTs had not been elucidated. METHODS: We compared the sequence of PSMA with the entire human proteome to identify proteins closely related to the target. We have identified glutamate carboxypeptidase III (GCPIII), N-acetylated alpha-linked acidic dipeptidase like 1 (NAALADL-1), and transferrin receptor 1 (TfR1) as extracellular targets with the highest similarity to PSMA. The affinity of compound 1 for PSMA, GCPIII, NAALADL-1, and TfR1 was measured by fluorescence polarization. The expression of the putative anti-target GCPIII was assessed by immunofluorescence on human salivary glands and kidney, using commercially available antibodies. RESULTS: A fluorescent derivative of Pluvicto™ (compound 1) bound tightly to PSMA and to GCPIII in fluorescence polarization experiments, while no interaction was observed with NAALADL-1 and TfR1. Immunofluorescence analysis revealed abundant expression of GCPIII both in healthy human kidney and salivary glands. CONCLUSION: We conclude that the membranous expression of GCPIII in kidney and salivary gland may be the underlying cause for unwanted accumulation of Pluvicto™ and other Glu-ureido PSMA radio pharmaceuticals in patients.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Radiofármacos , Masculino , Humanos , Radiofármacos/uso terapéutico , Dipéptidos/uso terapéutico , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Radioisótopos/uso terapéutico , Glándulas Salivales/diagnóstico por imagen , Glándulas Salivales/metabolismo , Riñón/metabolismo , Lutecio/uso terapéutico
13.
Clin Cancer Res ; 28(24): 5440-5454, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215129

RESUMEN

PURPOSE: Small molecule drug conjugates (SMDC) are modular anticancer prodrugs that include a tumor-targeting small organic ligand, a cleavable linker, and a potent cytotoxic agent. Most of the SMDC products that have been developed for clinical applications target internalizing tumor-associated antigens on the surface of tumor cells. We have recently described a novel non-internalizing small organic ligand (named OncoFAP) of fibroblast activation protein (FAP), a tumor-associated antigen highly expressed in the stroma of most solid human malignancies. EXPERIMENTAL DESIGN: In this article, we describe a new series of OncoFAP-Drug derivatives based on monomethyl auristatin E (MMAE; a potent cytotoxic tubulin poison) and dipeptide linkers that are selectively cleaved by FAP in the tumor microenvironment. RESULTS: The tumor-targeting potential of OncoFAP was confirmed in patients with cancer using nuclear medicine procedures. We used mass spectrometry methodologies to quantify the amount of prodrug delivered to tumors and normal organs, as well as the efficiency of the drug release process. Linkers previously exploited for anticancer drug conjugates were used as benchmark. We identified OncoFAP-Gly-Pro-MMAE as the best performing SMDC, which has now been prioritized for further clinical development. OncoFAP-Gly-Pro-MMAE selectively delivered more than 10% injected dose per gram of MMAE to FAP-positive tumors, with a tumor-to-kidney ratio of 16:1 at 24 hours post-injection. CONCLUSIONS: The FAP-specific drug conjugates described in this article promise to be efficacious for the targeting of human malignancies. The extracellular release of potent anticancer payloads mediates durable complete remission in difficult-to-treat animal models of cancer.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Profármacos , Animales , Humanos , Inmunoconjugados/química , Línea Celular Tumoral , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/uso terapéutico , Antígenos de Neoplasias , Fibroblastos/metabolismo
14.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36015106

RESUMEN

FAP-targeted radiopharmaceuticals represent a breakthrough in cancer imaging and a viable option for therapeutic applications. OncoFAP is an ultra-high-affinity ligand of FAP with a dissociation constant of 680 pM. OncoFAP has been recently discovered and clinically validated for PET imaging procedures in patients with solid malignancies. While more and more clinical validation is becoming available, the need for scalable and robust procedures for the preparation of this new class of radiopharmaceuticals continues to increase. In this article, we present the development of automated radiolabeling procedures for the preparation of OncoFAP-based radiopharmaceuticals for cancer imaging and therapy. A new series of [68Ga]Ga-OncoFAP, [177Lu]Lu-OncoFAP and [18F]AlF-OncoFAP was produced with high radiochemical yields. Chemical and biochemical characterization after radiolabeling confirmed its excellent stability, retention of high affinity for FAP and absence of radiolysis by-products. The in vivo biodistribution of [18F]AlF-NOTA-OncoFAP, a candidate for PET imaging procedures in patients, was assessed in mice bearing FAP-positive solid tumors. The product showed rapid accumulation in solid tumors, with an average of 6.6% ID/g one hour after systemic administration and excellent tumor-to-healthy organs ratio. We have developed simple, quick, safe and robust synthetic procedures for the preparation of theranostic OncoFAP-compounds based on Gallium-68, Lutetium-177 and Fluorine-18 using the commercially available FASTlab synthesis module.

15.
ChemMedChem ; 17(21): e202200350, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-35929380

RESUMEN

Natural Killer Group 2D (NKG2D) is a homo-dimeric transmembrane protein which is typically expressed on the surface of natural killer (NK) cells, natural killer T (NKT) cells, gamma delta T (γδT) cells, activated CD8 positive T-cells and activated macrophages. Bispecific molecules, capable of bridging NKG2D with a target protein expressed on the surface of tumor cells, may be used to redirect the cytotoxic activity of NK-cells towards antigen-positive malignant T-cells. In this work, we report the discovery of a novel NKG2D small molecule binder [KD =(410±60) nM], isolated from a DNA-Encoded Chemical Library (DEL). The discovery of small organic NKG2D ligands may facilitate the generation of fully synthetic bispecific adaptors, which may serve as an alternative to bispecific antibody products and which may benefit from better tumor targeting properties.


Asunto(s)
Subfamilia K de Receptores Similares a Lectina de Células NK , Bibliotecas de Moléculas Pequeñas , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ligandos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/metabolismo , Células Asesinas Naturales , ADN/metabolismo
16.
Anal Chem ; 94(30): 10715-10721, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35820828

RESUMEN

Nuclear medicine plays a key role in modern diagnosis and cancer therapy. The development of tumor-targeting radionuclide conjugates (also named small molecule-radio conjugates (SMRCs)) represents a significant improvement over the clinical use of metabolic radiotracers (e.g., [18F]-fluorodeoxyglucose) for imaging and over the application of biocidal external beam radiations for therapy. During the discovery of SMRCs, molecular candidates must be carefully evaluated typically by performing biodistribution assays in preclinical tumor models. Quantification methodologies based on radioactive counts are typically demanding due to safety concerns, availability of radioactive materials, and infrastructures. In this article, we report the development of a mass spectrometry (MS)-based method for the detection and quantification of small molecule-metal conjugates (SMMCs) as cold surrogates of SMRCs. We applied this methodology for the evaluation of the biodistribution of a particular class of tumor-targeting drug candidates based on natLu, natGa, and natF and directed against fibroblast activation protein (FAP). The reliability of the liquid chromatography-MS (LC-MS) analysis was validated by a direct comparison of MS-based and radioactivity-based biodistribution data. The results show that MS biodistribution of stable isotope metal conjugates is an orthogonal tool for the preclinical characterization of different classes of radiopharmaceuticals.


Asunto(s)
Neoplasias , Radiofármacos , Humanos , Espectrometría de Masas , Metales , Radioisótopos , Reproducibilidad de los Resultados , Distribución Tisular
17.
J Nucl Med ; 63(12): 1852-1858, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35589404

RESUMEN

Imaging procedures based on small-molecule radioconjugates targeting fibroblast activation protein (FAP) have recently emerged as a powerful tool for the diagnosis of a wide variety of tumors. However, the therapeutic potential of radiolabeled FAP-targeting agents is limited by their short residence time in neoplastic lesions. In this work, we present the development and in vivo characterization of BiOncoFAP, a new dimeric FAP-binding motif with an extended tumor residence time and favorable tumor-to-organ ratio. Methods: The binding properties of BiOncoFAP and its monovalent OncoFAP analog were assayed against recombinant human FAP. Preclinical experiments with 177Lu-OncoFAP-DOTAGA (177Lu-OncoFAP) and 177Lu-BiOncoFAP-DOTAGA (177Lu-BiOncoFAP) were performed on mice bearing FAP-positive HT-1080 tumors. Results: OncoFAP and BiOncoFAP displayed comparable subnanomolar dissociation constants toward recombinant human FAP in solution, but the bivalent BiOncoFAP bound more avidly to the target immobilized on solid supports. In a comparative biodistribution study, 177Lu-BiOncoFAP exhibited a more stable and prolonged tumor uptake than 177Lu-OncoFAP (∼20 vs. ∼4 percentage injected dose/g, respectively, at 24 h after injection). Notably, 177Lu-BiOncoFAP showed favorable tumor-to-organ ratios with low kidney uptake. Both 177Lu-OncoFAP and 177Lu-BiOncoFAP displayed potent antitumor efficacy when administered at therapeutic doses to tumor-bearing mice. Conclusion: 177Lu-BiOncoFAP is a promising candidate for radioligand therapy of cancer, with favorable in vivo tumor-to-organ ratios, a long tumor residence time, and potent anticancer efficacy.


Asunto(s)
Lutecio , Radiofármacos , Animales , Humanos , Ratones , Línea Celular Tumoral , Lutecio/uso terapéutico , Radiofármacos/uso terapéutico , Distribución Tisular
18.
J Med Chem ; 64(23): 17496-17510, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34821503

RESUMEN

Interleukin-2 (IL2) is a pro-inflammatory cytokine that plays a crucial role in immunity, which is increasingly being used for therapeutic applications. There is growing interest in developing IL2-based therapeutics which do not interact with the alpha subunit of the IL2 receptor (CD25) as this protein is primarily found on immunosuppressive regulatory T cells (Tregs). Screenings of a new DNA-encoded library, comprising 669,240 members, provided a novel series of IL2 ligands, subsequently optimized by medicinal chemistry. One of these molecules (compound 18) bound to IL2 with a dissociation constant of 0.34 µM was able to form a kinetically stable complex with IL2 in size-exclusion chromatography and recognized the CD25-binding site as evidenced by competition experiments with the NARA1 antibody. Compound 18 and other members of the series may represent the starting point for the discovery of potent small-molecule modulators of IL2 activity, abrogating the binding to CD25.


Asunto(s)
ADN/metabolismo , Interleucina-2/metabolismo , Humanos , Ligandos
19.
J Med Chem ; 64(21): 15799-15809, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34709820

RESUMEN

Placental alkaline phosphatase (PLAP) is an abundant surface antigen in the malignancies of the female reproductive tract. Nevertheless, the discovery of PLAP-specific small organic ligands for targeting applications has been hindered by ligand cross-reactivity with the ubiquitous tissue non-specific alkaline phosphatase (TNAP). In this study, we used DNA-encoded chemical libraries to discover a potent (IC50 = 32 nM) and selective PLAP inhibitor, with no detectable inhibition of TNAP activity. Subsequently, the PLAP ligand was conjugated to fluorescein; it specifically bound to PLAP-positive tumors in vitro and targeted cervical cancer in vivo in a mouse model of the disease. Ultimately, the fluorescent derivative of the PLAP inhibitor functioned as a bispecific engager redirecting the killing of chimeric antigen receptor-T cells specific to fluorescein on PLAP-positive tumor cells.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , ADN/genética , Inhibidores Enzimáticos/farmacología , Neoplasias de los Genitales Femeninos/química , Isoenzimas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Humanos , Ligandos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576184

RESUMEN

Antibody-cytokine fusion proteins (immunocytokines) are gaining importance for cancer therapy, but those products are often limited by systemic toxicity related to the activity of the cytokine payload in circulation and in secondary lymphoid organs. Tumor necrosis factor (TNF) is used as a pro-inflammatory payload to trigger haemorrhagic necrosis and boost anti-cancer immunity at the tumor site. Here we describe a depotentiated version of TNF (carrying the single point mutation I97A), which displayed reduced binding affinity to its cognate receptor tumor necrosis factor receptor 1 (TNFR-1) and lower biocidal activity. The fusion of the TNF(I97A) mutant to the L19 antibody promoted restoration of anti-tumor activity upon accumulation on the cognate antigen, the alternatively spliced EDB domain of fibronectin. In vivo administration of high doses (375 µg/Kg) of the fusion protein showed a potent anti-tumor effect without apparent toxicity compared with the wild type protein. L19-TNFI97A holds promise for the targeted delivery of TNF activity to neoplastic lesions, helping spare normal tissues.


Asunto(s)
Receptores del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/metabolismo , Cricetulus , Citocinas/genética , Citocinas/metabolismo , Femenino , Fibronectinas/genética , Fibronectinas/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunoterapia , Ratones Endogámicos BALB C , Mutación , Estructura Secundaria de Proteína , Receptores del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...