Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Clin Exp Med ; 24(1): 11, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244120

RESUMEN

Polycythemia Vera (PV) is typically caused by V617F or exon 12 JAK2 mutations. Little is known about Polycythemia cases where no JAK2 variants can be detected, and no other causes identified. This condition is defined as idiopathic erythrocytosis (IE). We evaluated clinical-laboratory parameters of a cohort of 56 IE patients and we determined their molecular profile at diagnosis with paired blood/buccal-DNA exome-sequencing coupled with a high-depth targeted OncoPanel to identify a possible underling germline or somatic cause. We demonstrated that most of our cohort (40/56: 71.4%) showed no evidence of clonal hematopoiesis, suggesting that IE is, in large part, a germline disorder. We identified 20 low mutation burden somatic variants (Variant allelic fraction, VAF, < 10%) in only 14 (25%) patients, principally involving DNMT3A and TET2. Only 2 patients presented high mutation burden somatic variants, involving DNMT3A, TET2, ASXL1 and WT1. We identified recurrent germline variants in 42 (75%) patients occurring mainly in JAK/STAT, Hypoxia and Iron metabolism pathways, among them: JAK3-V722I and HIF1A-P582S; a high fraction of patients (48.2%) resulted also mutated in homeostatic iron regulatory gene HFE-H63D or C282Y. By generating cellular models, we showed that JAK3-V722I causes activation of the JAK-STAT5 axis and upregulation of EPAS1/HIF2A, while HIF1A-P582S causes suppression of hepcidin mRNA synthesis, suggesting a major role for these variants in the onset of IE.


Asunto(s)
Policitemia Vera , Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia Vera/genética , Mutación , Hierro , Células Germinativas
2.
Leukemia ; 37(5): 988-1005, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019990

RESUMEN

Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto , Persona de Mediana Edad , Anciano , Leucemia Mieloide Aguda/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Fusión Génica
3.
Eur J Cancer ; 160: 72-79, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785111

RESUMEN

BACKGROUND: The outcome of infants with KMT2A-germline acute lymphoblastic leukaemia (ALL) is superior to that of infants with KMT2A-rearranged ALL but has been inferior to non-infant ALL patients. Here, we describe the outcome and prognostic factors for 167 infants with KMT2A-germline ALL enrolled in the Interfant-06 study. METHODS: Univariate analysis on prognostic factors (age, white blood cell count at diagnosis, prednisolone response and CD10 expression) was performed on KMT2A-germline infants in complete remission at the end of induction (EOI; n = 163). Bone marrow minimal residual disease (MRD) was measured in 73 patients by real-time quantitative polymerase chain reaction at various time points (EOI, n = 68; end of consolidation, n = 56; and before OCTADAD, n = 57). MRD results were classified as negative, intermediate (<5∗10-4), and high (≥5∗10-4). RESULTS: The 6-year event-free and overall survival was 73.9% (standard error [SE] = 3.6) and 87.2% (SE = 2.7). Relapses occurred early, within 36 months from diagnosis in 28 of 31 (90%) infants. Treatment-related mortality was 3.6%. Age <6 months was a favourable prognostic factor with a 6-year disease-free survival (DFS) of 91% (SE = 9.0) compared with 71.7% (SE = 4.2) in infants >6 months of age (P = 0.04). Patients with high EOI MRD ≥5 × 10-4 had a worse outcome (6-year DFS 61.4% [SE = 12.4], n = 16), compared with patients with undetectable EOI MRD (6-year DFS 87.9% [SE = 6.6], n = 28) or intermediate EOI MRD <5 × 10-4 (6-year DFS 76.4% [SE = 11.3], n = 24; P = 0.02). CONCLUSION: We conclude that young age at diagnosis and low EOI MRD seem favourable prognostic factors in infants with KMT2A-germline ALL and should be considered for risk stratification in future clinical trials.


Asunto(s)
Neoplasia Residual/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Femenino , Células Germinativas , Humanos , Lactante , Masculino , Neoplasia Residual/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Análisis de Supervivencia , Resultado del Tratamiento
5.
Clin Immunol ; 218: 108525, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659374

RESUMEN

The presence of large granular lymphocytes has been reported in patients with ADA2 deficiency and T-LGL leukemia. Here we describe two siblings with novel ADA2 variants, expanding the mutational spectrum of ADA2 deficiency. We show that lymphoproliferation, persistence of large granular lymphocytes, T-cell perturbations, and activation of PI3K pathway, measured by means of phosphorylation levels of S6, are detectable in DADA2 patients without T-LGL leukemia.


Asunto(s)
Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Linfocitos/inmunología , Niño , Variación Genética , Humanos , Masculino , Hermanos
7.
Leukemia ; 33(8): 1910-1922, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30858550

RESUMEN

Minimal residual disease (MRD) is a powerful prognostic factor in acute lymphoblastic leukemia (ALL) and is used for patient stratification and treatment decisions, but its precise role in Philadelphia chromosome positive ALL is less clear. This uncertainty results largely from methodological differences relating to the use of real-time quantitative PCR (qRT-PCR) to measure BCR-ABL1 transcript levels for MRD analysis. We here describe the first results by the EURO-MRD consortium on standardization of qRT-PCR for the e1a2 BCR-ABL1 transcript in Ph + ALL, designed to overcome the lack of standardisation of laboratory procedures and data interpretation. Standardised use of EAC primer/probe sets and of centrally prepared plasmid standards had the greatest impact on reducing interlaboratory variability. In QC1 the proportion of analyses with BCR-ABL1/ABL1 ratios within half a log difference were 40/67 (60%) and 52/67 (78%) at 10-3 and 36/67 (53%) and 53/67 (79%) at 10-4BCR-ABL1/ABL1. Standardized RNA extraction, cDNA synthesis and cycler platforms did not improve results further, whereas stringent application of technical criteria for assay quality and uniform criteria for data interpretation and reporting were essential. We provide detailed laboratory recommendations for the standardized MRD analysis in routine diagnostic settings and in multicenter clinical trials for Ph + ALL.


Asunto(s)
Proteínas de Fusión bcr-abl/genética , Cromosoma Filadelfia , Guías de Práctica Clínica como Asunto , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Consenso , Humanos , Neoplasia Residual , ARN Mensajero/análisis
8.
Leukemia ; 32(2): 273-284, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28701730

RESUMEN

Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Adulto , Niño , Aberraciones Cromosómicas , Rotura Cromosómica , Femenino , Reordenamiento Génico/genética , Humanos , Lactante , Masculino , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocación Genética/genética
10.
Leukemia ; 31(11): 2365-2375, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28331226

RESUMEN

Leukemias bearing CRLF2 and JAK2 gene alterations are characterized by aberrant JAK/STAT signaling and poor prognosis. The HDAC inhibitor givinostat/ITF2357 has been shown to exert anti-neoplastic activity against both systemic juvenile idiopathic arthritis and myeloproliferative neoplasms through inhibition of the JAK/STAT pathway. These findings led us to hypothesize that givinostat might also act against CRLF2-rearranged BCP-ALL, which lack effective therapies. Here, we found that givinostat inhibited proliferation and induced apoptosis of BCP-ALL CRLF2-rearranged cell lines, positive for exon 16 JAK2 mutations. Likewise, givinostat killed primary cells, but not their normal hematopoietic counterparts, from patients carrying CRLF2 rearrangements. At low doses, givinostat downregulated the expression of genes belonging to the JAK/STAT pathway and inhibited STAT5 phosphorylation. In vivo, givinostat significantly reduced engraftment of human blasts in patient-derived xenograft models of CRLF2-positive BCP-ALL. Importantly, givinostat killed ruxolitinib-resistant cells and potentiated the effect of current chemotherapy. Thus, givinostat in combination with conventional chemotherapy may represent an effective therapeutic option for these difficult-to-treat subsets of ALL. Lastly, the selective killing of cancer cells by givinostat may allow the design of reduced intensity regimens in CRLF2-rearranged Down syndrome-associated BCP-ALL patients with an overall benefit in terms of both toxicity and related complications.


Asunto(s)
Carbamatos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores de Citocinas/genética , Adolescente , Animales , Línea Celular Tumoral , Preescolar , Femenino , Humanos , Masculino , Ratones , Nitrilos , Fosforilación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pirazoles/farmacología , Pirimidinas , Factor de Transcripción STAT5/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Leukemia ; 31(1): 18-25, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27416911

RESUMEN

Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.


Asunto(s)
Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Tirosina Quinasa 3 Similar a fms/genética , Niño , Preescolar , Supervivencia sin Enfermedad , Epigénesis Genética/genética , Regulación Leucémica de la Expresión Génica , Humanos , Neoplasia Residual/genética , Pronóstico , Estudios Retrospectivos
13.
Oper Dent ; 41(2): 219-27, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26266654

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the differences in biological and mechanical performances of a silorane-based and a methacrylate-based composite. Another aim was to assess the influence of light-curing time and light-curing intensity on in vitro biofilm formation and flexural strength of the two tested composites. METHODS: Experiment 1: 432 specimens obtained from a silorane-based composite and from a standard methacrylate-based composite were divided into six groups and light-cured for 10, 20, 30, 40, 60, or 80 seconds, using one of two light-curing intensities, 400 mW/cm(2) or 800 mW/cm(2). At 24 hours, a monospecific Streptococcus mutans biofilm adherent to the surfaces of the samples was obtained. Then, a colorimetric technique (MTT assay) was used to evaluate the adherent viable biomass. Two samples per group were observed using confocal laser scanning microscopy. Analysis of variance (ANOVA) and Tukey tests were used to analyze the results (p<0.05). Experiment 2: 192 bar-shaped specimens were obtained and light-cured as in the previous experiment. A three-point bend test using a universal testing machine was performed to obtain flexural strength values. ANOVA and Tukey tests were used to analyze the results (p<0.05). RESULTS: In experiment 1, a highly significant difference (p<0.0001) in biofilm development was shown between silorane-based and methacrylate-based composites. In fact, the silorane-based composite exhibited better biological performance. Significant differences were also found between the two light-curing intensities (p<0.018) and for curing times (p<0.0001): silorane-based composite light-cured for 80 seconds at 800 mW/cm(2) light-curing intensity showed the lowest biofilm development. In experiment 2, a significant difference in flexural strength (p<0.0318) was only found between the different composites. Nevertheless, both resin composites showed flexural strength values in accordance with International Organization for Standardization guidelines even after 10 seconds of light-curing time. CONCLUSIONS: Silorane-based composite was less prone to biofilm development compared with a methacrylate-based composite. Acceptable flexural strength values for both composites were obtained after 10 seconds of light-curing time.


Asunto(s)
Biopelículas/efectos de la radiación , Resinas Compuestas/química , Resinas Compuestas/efectos de la radiación , Luces de Curación Dental , Resinas de Silorano/química , Resinas de Silorano/efectos de la radiación , Adhesión Bacteriana , Resistencia Flexional , Ensayo de Materiales , Microscopía Confocal , Streptococcus mutans
14.
Leukemia ; 30(1): 32-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26202931

RESUMEN

Deletions in IKZF1 are found in ~15% of children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). There is strong evidence for the poor prognosis of IKZF1 deletions affecting exons 4-7 and exons 1-8, but evidence for the remaining 33% of cases harboring other variants of IKZF1 deletions is lacking. In an international multicenter study we analyzed the prognostic value of these rare variants in a case-control design. Each IKZF1-deleted case was matched to three IKZF1 wild-type controls based on cytogenetic subtype, treatment protocol, risk stratification arm, white blood cell count and age. Hazard ratios for the prognostic impact of rare IKZF1 deletions on event-free survival were calculated by matched pair Cox regression. Matched pair analysis for all 134 cases with rare IKZF1 deletions together revealed a poor prognosis (P<0.001) that was evident in each risk stratification arm. Rare variant types with the most unfavorable event-free survival were DEL 2-7 (P=0.03), DEL 2-8 (P=0.002) and DEL-Other (P<0.001). The prognosis of each type of rare variant was equal or worse compared with the well-known major DEL 4-7 and DEL 1-8 IKZF1 deletion variants. We therefore conclude that all variants of rare IKZF1 deletions are associated with an unfavorable prognosis in pediatric BCP-ALL.


Asunto(s)
Eliminación de Gen , Factor de Transcripción Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Adolescente , Adulto , Niño , Preescolar , Subunidad alfa 2 del Factor de Unión al Sitio Principal/análisis , Humanos , Lactante , Cooperación Internacional , Proteínas de Fusión Oncogénica/análisis , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Pronóstico , Modelos de Riesgos Proporcionales
15.
Leukemia ; 29(8): 1656-67, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25917266

RESUMEN

High hyperdiploidy defines the largest genetic entity of childhood acute lymphoblastic leukemia (ALL). Despite its relatively low recurrence risk, this subgroup generates a high proportion of relapses. The cause and origin of these relapses remains obscure. We therefore explored the mutational landscape in high hyperdiploid (HD) ALL with whole-exome (n=19) and subsequent targeted deep sequencing of 60 genes in 100 relapsing and 51 non-relapsing cases. We identified multiple clones at diagnosis that were primarily defined by a variety of mutations in receptor tyrosine kinase (RTK)/Ras pathway and chromatin-modifying genes. The relapse clones consisted of reappearing as well as new mutations, and overall contained more mutations. Although RTK/Ras pathway mutations were similarly frequent between diagnosis and relapse, both intergenic and intragenic heterogeneity was essentially lost at relapse. CREBBP mutations, however, increased from initially 18-30% at relapse, then commonly co-occurred with KRAS mutations (P<0.001) and these relapses appeared primarily early (P=0.012). Our results confirm the exceptional susceptibility of HD ALL to RTK/Ras pathway and CREBBP mutations, but, more importantly, suggest that mutant KRAS and CREBBP might cooperate and equip cells with the necessary capacity to evolve into a relapse-generating clone.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteína de Unión a CREB/genética , Diploidia , Mutación/genética , Recurrencia Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Adolescente , Estudios de Casos y Controles , Niño , Evolución Clonal , Femenino , Estudios de Seguimiento , Humanos , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Proteínas Proto-Oncogénicas p21(ras) , Tasa de Supervivencia
17.
Leukemia ; 29(1): 38-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24798483

RESUMEN

Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.


Asunto(s)
Reordenamiento Génico , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Xenoinjertos , N-Metiltransferasa de Histona-Lisina , Humanos , Inmunofenotipificación , Hibridación Fluorescente in Situ , Lactante , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología
19.
Leukemia ; 28(5): 1015-21, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24166298

RESUMEN

Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of childhood B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). To date, fluorescence in situ hybridisation (FISH), with probes specific for the RUNX1 gene, provides the only reliable detection method (five or more RUNX1 signals per cell). Patients with iAMP21 are older (median age 9 years) with a low white cell count. Previously, we demonstrated a high relapse risk when these patients were treated as standard risk. Recent studies have shown improved outcome on intensive therapy. In view of these treatment implications, accurate identification is essential. Here we have studied the cytogenetics and outcome of 530 iAMP21 patients that highlighted the association of specific secondary chromosomal and genetic changes with iAMP21 to assist in diagnosis, including the gain of chromosome X, loss or deletion of chromosome 7, ETV6 and RB1 deletions. These iAMP21 patients when treated as high risk showed the same improved outcome as those in trial-based studies regardless of the backbone chemotherapy regimen given. This study reinforces the importance of intensified treatment to reduce the risk of relapse in iAMP21 patients. This now well-defined patient subgroup should be recognised by World Health Organisation (WHO) as a distinct entity of BCP-ALL.


Asunto(s)
Cromosomas Humanos Par 21 , Análisis Citogenético , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Adulto , Niño , Preescolar , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA