Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764524

RESUMEN

Di-isononyl phthalates are chemicals that are widely used as plasticizers. Humans are extensively exposed to these compounds by dietary intake, through inhalation and skin absorption. Sulfotransferases (SULTs) are enzymes responsible for the detoxification and elimination of numerous endogenous and exogenous molecules from the body. Consequently, SULTs are involved in regulating the biological activity of various hormones and neurotransmitters. The present study considers a computational approach to predict the toxicological potential of the metabolites of di-isononyl phthalate. Furthermore, molecular docking was considered to evaluate the inhibitory potential of these metabolites against the members of family 1 of SULTs. The metabolites of di-isononyl phthalate reveal a potency to cause liver damage and to inhibit receptors activated by peroxisome proliferators. These metabolites are also usually able to inhibit the activity of the members of family 1 of SULTs, except for SULT1A3 and SULT1B1. The outcomes of this study are important for an enhanced understanding of the risk of human exposure to di-isononyl phthalates.


Asunto(s)
Ácidos Ftálicos , Sulfotransferasas , Humanos , Simulación del Acoplamiento Molecular , Ácidos Ftálicos/toxicidad , Plastificantes
2.
Drug Discov Today ; 27(11): 103349, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36096358

RESUMEN

Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk. Here, we review current knowledge on non-synonymous single nucleotide polymorphisms (nsSNPs) of human SULTs, focusing on the coded SULT allozymes and molecular mechanisms explaining their variable activity, which is essential for personalized medicine. We discuss the structural and dynamic bases of key amino acid (AA) variants implicated in the impacts on drug metabolism in the case of SULT1A1, as revealed by molecular modeling approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA