Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Numer Method Biomed Eng ; : e3837, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839043

RESUMEN

The mechanisms behind intracranial aneurysm formation and rupture are not fully understood, with factors such as location, patient demographics, and hemodynamics playing a role. Additionally, the significance of anatomical features like blebs in ruptures is debated. This highlights the necessity for comprehensive research that combines patient-specific risk factors with a detailed analysis of local hemodynamic characteristics at bleb and rupture sites. Our study analyzed 359 intracranial aneurysms from 268 patients, reconstructing patient-specific models for hemodynamic simulations based on 3D rotational angiographic images and intraoperative videos. We identified aneurysm subregions and delineated rupture sites, characterizing blebs and their regional overlap, employing statistical comparisons across demographics, and other risk factors. This work identifies patterns in aneurysm rupture sites, predominantly at the dome, with variations across patient demographics. Hypertensive and anterior communicating artery (ACom) aneurysms showed specific rupture patterns and bleb associations, indicating two pathways: high-flow in ACom with thin blebs at impingement sites and low-flow, oscillatory conditions in middle cerebral artery (MCA) aneurysms fostering thick blebs. Bleb characteristics varied with gender, age, and smoking, linking rupture risks to hemodynamic factors and patient profiles. These insights enhance understanding of the hemodynamic mechanisms leading to rupture events. This analysis elucidates the role of localized hemodynamics in intracranial aneurysm rupture, challenging the emphasis on location by revealing how flow variations influence stability and risk. We identify two pathways to wall failure-high-flow and low-flow conditions-highlighting the complexity of aneurysm behavior. Additionally, this research advances our knowledge of how inherent patient-specific characteristics impact these processes, which need further investigation.

2.
Microsc Microanal ; 30(2): 342-358, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38525887

RESUMEN

Deviation of blood flow from an optimal range is known to be associated with the initiation and progression of vascular pathologies. Important open questions remain about how the abnormal flow drives specific wall changes in pathologies such as cerebral aneurysms where the flow is highly heterogeneous and complex. This knowledge gap precludes the clinical use of readily available flow data to predict outcomes and improve treatment of these diseases. As both flow and the pathological wall changes are spatially heterogeneous, a crucial requirement for progress in this area is a methodology for acquiring and comapping local vascular wall biology data with local hemodynamic data. Here, we developed an imaging pipeline to address this pressing need. A protocol that employs scanning multiphoton microscopy was developed to obtain three-dimensional (3D) datasets for smooth muscle actin, collagen, and elastin in intact vascular specimens. A cluster analysis was introduced to objectively categorize the smooth muscle cells (SMC) across the vascular specimen based on SMC actin density. Finally, direct quantitative comparison of local flow and wall biology in 3D intact specimens was achieved by comapping both heterogeneous SMC data and wall thickness to patient-specific hemodynamic results.


Asunto(s)
Matriz Extracelular , Hemodinámica , Microscopía de Fluorescencia por Excitación Multifotónica , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/citología , Actinas/metabolismo , Animales , Colágeno/metabolismo , Humanos , Elastina/metabolismo , Elastina/análisis , Imagenología Tridimensional/métodos , Arterias
3.
ArXiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38313202

RESUMEN

Vascular calcification is implicated as an important factor in major adverse cardiovascular events (MACE), including heart attack and stroke. A controversy remains over how to integrate the diverse forms of vascular calcification into clinical risk assessment tools. Even the commonly used calcium score for coronary arteries, which assumes risk scales positively with total calcification, has important inconsistencies. Fundamental studies are needed to determine how risk is influenced by the diverse calcification phenotypes. However, studies of these kinds are hindered by the lack of high-throughput, objective, and non-destructive tools for classifying calcification in imaging data sets. Here, we introduce a new classification system for phenotyping calcification along with a semi-automated, non-destructive pipeline that can distinguish these phenotypes in even atherosclerotic tissues. The pipeline includes a deep-learning-based framework for segmenting lipid pools in noisy µ-CT images and an unsupervised clustering framework for categorizing calcification based on size, clustering, and topology. This approach is illustrated for five vascular specimens, providing phenotyping for thousands of calcification particles across as many as 3200 images in less than seven hours. Average Dice Similarity Coefficients of 0.96 and 0.87 could be achieved for tissue and lipid pool, respectively, with training and validation needed on only 13 images despite the high heterogeneity in these tissues. By introducing an efficient and comprehensive approach to phenotyping calcification, this work enables large-scale studies to identify a more reliable indicator of the risk of cardiovascular events, a leading cause of global mortality and morbidity.

4.
J Neurointerv Surg ; 16(4): 392-397, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37230750

RESUMEN

BACKGROUND: The presence of blebs increases the rupture risk of intracranial aneurysms (IAs). OBJECTIVE: To evaluate whether cross-sectional bleb formation models can identify aneurysms with focalized enlargement in longitudinal series. METHODS: Hemodynamic, geometric, and anatomical variables derived from computational fluid dynamics models of 2265 IAs from a cross-sectional dataset were used to train machine learning (ML) models for bleb development. ML algorithms, including logistic regression, random forest, bagging method, support vector machine, and K-nearest neighbors, were validated using an independent cross-sectional dataset of 266 IAs. The models' ability to identify aneurysms with focalized enlargement was evaluated using a separate longitudinal dataset of 174 IAs. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), the sensitivity and specificity, positive predictive value, negative predictive value, F1 score, balanced accuracy, and misclassification error. RESULTS: The final model, with three hemodynamic and four geometrical variables, along with aneurysm location and morphology, identified strong inflow jets, non-uniform wall shear stress with high peaks, larger sizes, and elongated shapes as indicators of a higher risk of focal growth over time. The logistic regression model demonstrated the best performance on the longitudinal series, achieving an AUC of 0.9, sensitivity of 85%, specificity of 75%, balanced accuracy of 80%, and a misclassification error of 21%. CONCLUSIONS: Models trained with cross-sectional data can identify aneurysms prone to future focalized growth with good accuracy. These models could potentially be used as early indicators of future risk in clinical practice.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Humanos , Estudios Transversales , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/cirugía , Hemodinámica , Aprendizaje Automático , Aneurisma Roto/cirugía
5.
Front Physiol ; 14: 1113034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275225

RESUMEN

Introduction: Computational fluid dynamics (CFD) assess biological systems based on specific boundary conditions. We propose modeling more advanced hemodynamic metrics, such as core line length (CL) and critical points which characterize complexity of flow in the context of cerebral vasculature, and specifically cerebral veins during the physiologically evolving early neonatal state of vein of Galen malformations (VOGM). CFD has not been applied to the study of arteriovenous shunting in Vein of Galen Malformations but could help illustrate the pathophysiology of this malformation. Methods: Three neonatal patients with VOGM at Boston Children's Hospital met inclusion criteria for this study. Structural MRI data was segmented to generate a mesh of the VOGM and venous outflow. Boundary condition flow velocity was derived from PC-MR sequences with arterial and venous dual velocity encoding. The mesh and boundary conditions were applied to model the cerebral venous flow. We computed flow variables including mean wall shear stress (WSSmean), mean OSI, CL, and the mean number of critical points (nCrPointsmean) for each patient specific model. A critical point is defined as the location where the shear stress vector field is zero (stationary point) and can be used to describe complexity of flow. Results: The division of flow into the left and right venous outflow was comparable between PC-MR and CFD modeling. A high complexity recirculating flow pattern observed on PC-MR was also identified on CFD modeling. Regions of similar WSSmean and OSImean (<1.3 fold) in the left and right venous outflow channels of a single patient have several-fold magnitude difference in higher order hemodynamic metrics (> 3.3 fold CL, > 1.7 fold nCrPointsmean). Specifically, the side which developed JBS in each model had greater nCrPointsmean compared to the jugular bulb with no stenosis (VOGM1: 4.49 vs. 2.53, VOGM2: 1.94 vs. 0, VOGM3: 1 vs. 0). Biologically, these regions had subsequently divergent development, with increased complexity of flow associating with venous stenosis. Discussion: Advanced metrics of flow complexity identified in computational models may reflect observed flow phenomena not fully characterized by primary or secondary hemodynamic parameters. These advanced metrics may indicate physiological states that impact development of jugular bulb stenosis in VOGM.

6.
Int J Numer Method Biomed Eng ; 39(8): e3740, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288602

RESUMEN

The goal of this study was to test if CFD-based virtual angiograms could be used to automatically discriminate between intracranial aneurysms (IAs) with and without flow stagnation. Time density curves (TDC) were extracted from patient digital subtraction angiography (DSA) image sequences by computing the average gray level intensity inside the aneurysm region and used to define injection profiles for each subject. Subject-specific 3D models were reconstructed from 3D rotational angiography (3DRA) and computational fluid dynamics (CFD) simulations were performed to simulate the blood flow inside IAs. Transport equations were solved numerically to simulate the dynamics of contrast injection into the parent arteries and IAs and then the contrast retention time (RET) was calculated. The importance of gravitational pooling of contrast agent within the aneurysm was evaluated by modeling contrast agent and blood as a mixture of two fluids with different densities and viscosities. Virtual angiograms can reproduce DSA sequences if the correct injection profile is used. RET can identify aneurysms with significant flow stagnation even when the injection profile is not known. Using a small sample of 14 IAs of which seven were previously classified as having flow stagnation, it was found that a threshold RET value of 0.46 s can successfully identify flow stagnation. CFD-based prediction of stagnation was in more than 90% agreement with independent visual DSA assessment of stagnation in a second sample of 34 IAs. While gravitational pooling prolonged contrast retention time it did not affect the predictive capabilities of RET. CFD-based virtual angiograms can detect flow stagnation in IAs and can be used to automatically identify aneurysms with flow stagnation even without including gravitational effects on contrast agents.


Asunto(s)
Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Medios de Contraste , Hidrodinámica , Angiografía de Substracción Digital , Hemodinámica , Imagenología Tridimensional
7.
Cardiovasc Eng Technol ; 14(1): 92-103, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35819581

RESUMEN

PURPOSE: Blebs are known risk factors for intracranial aneurysm (IA) rupture. We analyzed differences between IAs that ruptured with blebs and those that ruptured without developing blebs to identify distinguishing characteristics among them and suggest possible mechanistic implications. METHODS: Using image-based models, 25 hemodynamic and geometric parameters were compared between ruptured IAs with and without blebs (n = 673), stratified by location. Hemodynamic and geometric differences between bifurcation and sidewall aneurysms and for aneurysms at five locations were also analyzed. RESULTS: Ruptured aneurysms harboring blebs were exposed to higher flow conditions than aneurysms that ruptured without developing blebs, and this was consistent across locations. Bifurcation aneurysms were exposed to higher flow conditions than sidewall aneurysms. They had larger maximum wall shear stress (WSS), more concentrated WSS distribution, and larger numbers of critical points than sidewall aneurysms. Additionally, bifurcation aneurysms were larger, more elongated, and had more distorted shapes than sidewall aneurysms. Aneurysm morphology was associated with aneurysm location (p < 0.01). Flow conditions were different between aneurysm locations. CONCLUSION: Aneurysms at different locations are likely to develop into varying morphologies and thus be exposed to diverse flow conditions that may predispose them to follow distinct pathways towards rupture with or without bleb development. This could explain the diverse rupture rates and bleb presence in aneurysms at different locations.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Humanos , Hemodinámica , Aneurisma Intracraneal/diagnóstico por imagen , Factores de Riesgo , Estrés Mecánico
8.
Front Physiol ; 13: 881627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923225

RESUMEN

Background and Purpose: Delayed intraparenchymal hemorrhages (DIPHs) are one of the most serious complications of cerebral aneurysm treatment with flow diverters (FD), yet their causes are largely unknown. This study analyzes distal hemodynamic alterations induced by the treatment of intracranial aneurysms with FDs. Methods: A realistic model of the brain arterial network was constructed from MRA images and extended with a constrained constructive optimization technique down to vessel diameters of approximately 50 µ m . Different variants of the circle of Willis were created by alternatively occluding communicating arteries. Collateral vessels connecting different arterial trees were then added to the model, and a distributed lumped parameter approach was used to model the pulsatile blood flow in the arterial network. The treatment of an ICA aneurysm was modeled by changing the local resistance, flow inertia, and compliance of the aneurysmal segment. Results: The maximum relative change in distal pressure induced by the aneurysm treatment was below 1%. However, for certain combinations of the circle of Willis and distal collateralization, important flow reversals (with a wall shear stress larger than approximately 1.0   d y n e / c m 2 ) were observed in collateral vessels, both ipsilaterally and contralaterally to the treated aneurysm. Conclusion: This study suggests the hypothesis that flow diverters treatment of intracranial aneurysms could cause important flow reversal in distal collaterals. Flow reversal has previously been shown to be pro-inflammatory and pro-atherogenic and could therefore have a detrimental effect on these collateral vessels, and thus could be a suitable explanation of DIPHs, while the small distal pressure increase is not.

9.
J Neurointerv Surg ; 14(10): 1002-1007, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34686573

RESUMEN

BACKGROUND: Bleb presence in intracranial aneurysms (IAs) is a known indication of instability and vulnerability. OBJECTIVE: To develop and evaluate predictive models of bleb development in IAs based on hemodynamics, geometry, anatomical location, and patient population. METHODS: Cross-sectional data (one time point) of 2395 IAs were used for training bleb formation models using machine learning (random forest, support vector machine, logistic regression, k-nearest neighbor, and bagging). Aneurysm hemodynamics and geometry were characterized using image-based computational fluid dynamics. A separate dataset with 266 aneurysms was used for model evaluation. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), true positive rate (TPR), false positive rate (FPR), precision, and balanced accuracy. RESULTS: The final model retained 18 variables, including hemodynamic, geometrical, location, multiplicity, and morphology parameters, and patient population. Generally, strong and concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns together with larger, more elongated, and more distorted shapes were associated with bleb formation. The best performance on the validation set was achieved by the random forest model (AUC=0.82, TPR=91%, FPR=36%, misclassification error=27%). CONCLUSIONS: Based on the premise that aneurysm characteristics prior to bleb formation resemble those derived from vascular reconstructions with their blebs virtually removed, machine learning models can identify aneurysms prone to bleb development with good accuracy. Pending further validation with longitudinal data, these models may prove valuable for assessing the propensity of IAs to progress to vulnerable states and potentially rupturing.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Humanos , Aneurisma Roto/epidemiología , Estudios Transversales , Hemodinámica , Hidrodinámica , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/cirugía , Aprendizaje Automático
10.
Bioengineering (Basel) ; 8(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34821715

RESUMEN

Intracranial aneurysms (IAs) are localized enlargements of cerebral blood vessels that cause substantial rates of mortality and morbidity in humans. The rupture possibility of these aneurysms is a critical medical challenge for physicians during treatment planning. This treatment planning while assessing the rupture potential of aneurysms becomes more complicated when they are constrained by an adjacent structure such as optic nerve tissues or bones, which is not widely studied yet. In this work, we considered and studied a constitutive model to investigate the bio-mechanical response of image-based patient-specific IA data using cardiovascular structural mechanics equations. We performed biomechanical modeling and simulations of four different patient-specific aneurysms' data (three middle cerebral arteries and one internal carotid artery) to assess the rupture potential of those aneurysms under a plane contact constraint. Our results suggest that aneurysms with plane contact constraints produce less or almost similar maximum wall effective stress compared to aneurysms with no contact constraints. In our research findings, we observed that a plane contact constraint on top of an internal carotid artery might work as a protective wall due to the 16.6% reduction in maximum wall effective stress than that for the case where there is no contact on top of the aneurysm.

11.
Int J Numer Method Biomed Eng ; 37(1): e3415, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33205887

RESUMEN

While previous studies have identified many risk factors for the progression and rupture of cerebral aneurysms, the changes in aneurysm flow characteristics during its evolution are not fully understood. This work analyzes the changes in the aneurysm hemodynamic environment from its initial development to later stages when the aneurysm has substantially enlarged. A total of 88 aneurysms at four locations were studied with image based computational fluid dynamics (CFD). Two synthetic sequences representing the aneurysm geometry at three earlier stages were generated by shrinking the aneurysm sac while keeping the neck fixed or shrinking the neck simultaneously. The flow conditions were then quantitatively compared between these two modes of evolution. As aneurysms enlarged, the inflow rate increased in growing neck sequences, but decreased in fixed neck sequences. The inflow jet became more concentrated in both sequences. The mean aneurysm flow velocity and wall shear stress decreased in both sequences, but they decreased faster in enlarging aneurysms if the neck was fixed. Additionally, the intra-aneurysmal flows became more complex and more unstable, wall shear stress distribution became more oscillatory, and the area under low wall shear stress increased for both sequences. The evolution of flow characteristics of aneurysms with fixed and growing necks are different. The observed trends suggest that fixed neck aneurysms may evolve towards a flow environment characteristic of stable aneurysms faster than aneurysms with growing necks, which could also evolve towards a more disfavorable environment.


Asunto(s)
Aneurisma Intracraneal , Hemodinámica , Humanos , Hidrodinámica , Aneurisma Intracraneal/diagnóstico por imagen , Estrés Mecánico
12.
J Neurointerv Surg ; 13(7): 642-646, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33020208

RESUMEN

BACKGROUND: Blebs are important secondary structures of intracranial aneurysms associated with increased rupture risk and can affect local wall stress and hemodynamics. Mechanisms of bleb development and evolution are not clearly understood. We investigate the relationship between blebs with different wall characteristics and local hemodynamics and rupture sites. METHODS: Blebs with different wall appearances in intra-operative videos were analyzed with image-based computational fluid dynamics. Thin red blebs were compared against thick atherosclerotic/hyperplastic white/yellow blebs. Rupture points were identified in videos of ruptured aneurysms harboring blebs. RESULTS: Thin blebs tended to be closer to the inflow than atherosclerotic blebs of the same aneurysm (P=0.0234). Blebs near the inflow had higher velocity (P=0.0213), vorticity (P=0.0057), shear strain rate (P=0.0084), wall shear stress (WSS) (P=0.0085), and WSS gradient (P=0.0151) than blebs far from the inflow. In a subset of 12 ruptured aneurysms harboring blebs, rupture points were associated with thin blebs in 42% of aneurysms, atherosclerotic blebs in 25%, and were away from blebs in the remaining 33%. CONCLUSIONS: Not all blebs are equal; some have thin translucent walls while others have thick atherosclerotic walls. Thin blebs tend to be located closer to the inflow than atherosclerotic blebs. Blebs near the inflow are exposed to stronger flows with higher and spatially variable WSS than blebs far from the inflow which tend to have uniformly lower WSS. Aneurysms can rupture at thin blebs, atherosclerotic blebs, and even away from blebs. Further study of wall failure in aneurysms with different bleb types is needed.


Asunto(s)
Aneurisma Roto , Hemodinámica , Hidrodinámica , Aneurisma Intracraneal , Femenino , Humanos , Masculino , Aneurisma Roto/diagnóstico por imagen , Aneurisma Roto/fisiopatología , Aneurisma Roto/cirugía , Hemodinámica/fisiología , Imagenología Tridimensional/métodos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/fisiopatología , Aneurisma Intracraneal/cirugía , Microcirugia/métodos , Factores de Riesgo , Estrés Mecánico
13.
J Neurointerv Surg ; 13(3): 231-236, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32680874

RESUMEN

BACKGROUND: Although it is generally believed that blebs represent weaker spots in the walls of intracranial aneurysms (IAs), it is largely unknown which aneurysm characteristics favor their development. OBJECTIVE: To investigate possible associations between aneurysm hemodynamic and geometric characteristics and the development of blebs in intracranial aneurysms. METHODS: A total of 270 IAs in 199 patients selected for surgical clipping were studied. Blebs were visually identified and interactively marked on patient-specific vascular models constructed from presurgical images. Blebs were then deleted from the vascular reconstruction to approximate the aneurysm before bleb formation. Computational fluid dynamics studies were performed in these models and in cases without blebs. Hemodynamic and geometric characteristics of aneurysms with and without blebs were compared. RESULTS: A total of 173 aneurysms had no blebs, while 97 aneurysms had a total of 122 blebs. Aneurysms favoring bleb formation had stronger (p<0.0001) and more concentrated inflow jets (p<0.0001), higher flow velocity (p=0.0061), more complex (p<0.0001) and unstable (p=0.0157) flow patterns, larger maximum wall shear stress (WSS; p<0.0001), more concentrated (p=0.0005) and oscillatory (p=0.0004) WSS distribution, and a more heterogeneous WSS field (p<0.0001), than aneurysms without blebs. They were also larger (p<0.0001), more elongated (p<0.0001), had wider necks (p=0.0002), and more distorted and irregular shapes (p<0.0001). CONCLUSIONS: Strong and concentrated inflow jets, high-speed, complex, and unstable flow patterns, and concentrated, oscillatory, and heterogeneous WSS patterns favor the formation of blebs in IAs. Blebs are more likely to form in large, elongated, and irregularly shaped aneurysms. These adverse characteristics could be considered signs of aneurysm instability when evaluating aneurysms for conservative observation or treatment.


Asunto(s)
Aneurisma Roto , Hemodinámica , Aneurisma Intracraneal , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aneurisma Roto/diagnóstico por imagen , Aneurisma Roto/fisiopatología , Aneurisma Roto/cirugía , Hemodinámica/fisiología , Hidrodinámica , Imagenología Tridimensional/métodos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/fisiopatología , Aneurisma Intracraneal/cirugía , Factores de Riesgo , Estrés Mecánico
14.
J Neurointerv Surg ; 13(3): 226-230, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32680877

RESUMEN

BACKGROUND: Blebs are rupture risk factors in intracranial aneurysms (IAs), but their prevalence, distribution, and associations with clinical factors as well as their causes and effects on aneurysm vulnerability remain unclear. METHODS: A total of 122 blebs in 270 IAs selected for surgery were studied using patient-specific vascular reconstructions from 3D angiographic images. Bleb geometry, location on the aneurysm, and frequency of occurrence in aneurysms at different locations were analyzed. Associations between gender, age, smoking, hypertension, hormone therapy, dental infection, and presence of blebs were investigated. RESULTS: Of all aneurysms with blebs, 77% had a single bleb and 23% had multiple blebs. Only 6% of blebs were at the neck, while 46% were in the body and 48% in the dome. Aneurysms with blebs were larger (p<0.0001), more elongated (p=0.0002), and with wider necks than aneurysms without blebs. Bleb presence was associated with dental infection (p=0.0426) and negatively associated with hormone therapy (p=0.0426) in women. Anterior and posterior communicating arteries had larger percentages of aneurysms with blebs than internal carotid arteries. Patients with a history of hypertension tended to have a larger percentage of aneurysms with blebs. However, these trends did not reach significance in this sample. CONCLUSIONS: Blebs are common in IAs, and most aneurysms harboring blebs have a single bleb. Blebs in the aneurysm neck are rare, but they are equally common in the body and dome. The presence of blebs in IAs was associated with dental infection, and negatively associated with hormone replacement therapy.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aneurisma Roto/diagnóstico por imagen , Aneurisma Roto/epidemiología , Aneurisma Roto/cirugía , Arteria Carótida Interna/fisiopatología , Angiografía Cerebral/métodos , Hipertensión/diagnóstico por imagen , Hipertensión/epidemiología , Hipertensión/cirugía , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/epidemiología , Aneurisma Intracraneal/cirugía , Prevalencia , Factores de Riesgo , Fumar/efectos adversos , Fumar/epidemiología
15.
Acta Neurochir (Wien) ; 162(3): 553-566, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32008209

RESUMEN

BACKGROUND: Hemodynamic patterns have been associated with cerebral aneurysm instability. For patient-specific computational fluid dynamics (CFD) simulations, the inflow rates of a patient are typically not known. The aim of this study was to analyze the influence of inter- and intra-patient variations of cerebral blood flow on the computed hemodynamics through CFD simulations and to incorporate these variations into statistical models for aneurysm rupture prediction. METHODS: Image data of 1820 aneurysms were used for patient-specific steady CFD simulations with nine different inflow rates per case, capturing inter- and intra-patient flow variations. Based on the computed flow fields, 17 hemodynamic parameters were calculated and compared for the different flow conditions. Next, statistical models for aneurysm rupture were trained in 1571 of the aneurysms including hemodynamic parameters capturing the flow variations either by defining hemodynamic "response variables" (model A) or repeatedly randomly selecting flow conditions by patients (model B) as well as morphological and patient-specific variables. Both models were evaluated in the remaining 249 cases. RESULTS: All hemodynamic parameters were significantly different for the varying flow conditions (p < 0.001). Both the flow-independent "response" model A and the flow-dependent model B performed well with areas under the receiver operating characteristic curve of 0.8182 and 0.8174 ± 0.0045, respectively. CONCLUSIONS: The influence of inter- and intra-patient flow variations on computed hemodynamics can be taken into account in multivariate aneurysm rupture prediction models achieving a good predictive performance. Such models can be applied to CFD data independent of the specific inflow boundary conditions.


Asunto(s)
Aneurisma Roto/diagnóstico , Hemodinámica , Aneurisma Intracraneal/diagnóstico , Modelación Específica para el Paciente , Variación Biológica Poblacional , Circulación Cerebrovascular , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Int J Comput Assist Radiol Surg ; 15(1): 141-150, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31485987

RESUMEN

PURPOSE: Incidental aneurysms pose a challenge to physicians who need to decide whether or not to treat them. A statistical model could potentially support such treatment decisions. The aim of this study was to compare a previously developed aneurysm rupture logistic regression probability model (LRM) to other machine learning (ML) classifiers for discrimination of aneurysm rupture status. METHODS: Hemodynamic, morphological, and patient-related information of 1631 cerebral aneurysms characterized by computational fluid dynamics simulations were used to train support vector machines (SVMs) with linear and RBF kernel (RBF-SVM), k-nearest neighbors (kNN), decision tree, random forest, and multilayer perceptron (MLP) neural network classifiers for predicting the aneurysm rupture status. The classifiers' accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated and compared to the LRM using 249 test cases obtained from two external cohorts. Additionally, important variables were determined based on the random forest and weights of the linear SVM. RESULTS: The AUCs of the MLP, LRM, linear SVM, RBF-SVM, kNN, decision tree, and random forest were 0.83, 0.82, 0.80, 0.81, 0.76, 0.70, and 0.79, respectively. The accuracy ranged between 0.76 (decision tree,) and 0.79 (linear SVM, RBF-SVM, and MLP). Important variables for predicting the aneurysm rupture status included aneurysm location, the mean surface curvature, and maximum flow velocity. CONCLUSION: The performance of the LRM was overall comparable to that of the other ML classifiers, confirming its potential for aneurysm rupture assessment. To further improve the predictions, additional information, e.g., related to the aneurysm wall, might be needed.


Asunto(s)
Aneurisma Roto/diagnóstico , Árboles de Decisión , Hemodinámica/fisiología , Aneurisma Intracraneal/diagnóstico , Modelos Estadísticos , Máquina de Vectores de Soporte , Aneurisma Roto/fisiopatología , Humanos , Aneurisma Intracraneal/fisiopatología , Curva ROC
17.
Arterioscler Thromb Vasc Biol ; 39(10): 2157-2167, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31462093

RESUMEN

OBJECTIVE: Although the clinical and biological importance of calcification is well recognized for the extracerebral vasculature, its role in cerebral vascular disease, particularly, intracranial aneurysms (IAs), remains poorly understood. Extracerebrally, 2 distinct mechanisms drive calcification, a nonatherosclerotic, rapid mineralization in the media and a slower, inflammation driven, atherosclerotic mechanism in the intima. This study aims to determine the prevalence, distribution, and type (atherosclerotic, nonatherosclerotic) of calcification in IAs and assess differences in occurrence between ruptured and unruptured IAs. Approach and Results: Sixty-five 65 IA specimens (48 unruptured, 17 ruptured) were resected perioperatively. Calcification and lipid pools were analyzed nondestructively in intact samples using high resolution (0.35 µm) microcomputed tomography. Calcification is highly prevalent (78%) appearing as micro (<500 µm), meso (500 µm-1 mm), and macro (>1 mm) calcifications. Calcification manifests in IAs as both nonatherosclerotic (calcification distinct from lipid pools) and atherosclerotic (calcification in the presence of lipid pools) with 3 wall types: Type I-only calcification, no lipid pools (20/51, 39%), Type II-calcification and lipid pools, not colocalized (19/51, 37%), Type III-calcification colocalized with lipid pools (12/51, 24%). Ruptured IAs either had no calcifications or had nonatherosclerotic micro- or meso-calcifications (Type I or II), without macro-calcifications. CONCLUSIONS: Calcification in IAs is substantially more prevalent than previously reported and presents as both nonatherosclerotic and atherosclerotic types. Notably, ruptured aneurysms had only nonatherosclerotic calcification, had significantly lower calcification fraction, and did not contain macrocalcifications. Improved understanding of the role of calcification in IA pathology should lead to new therapeutic targets.


Asunto(s)
Aneurisma Roto/patología , Aterosclerosis/patología , Calcinosis/patología , Procesamiento de Imagen Asistido por Computador/métodos , Aneurisma Intracraneal/patología , Microtomografía por Rayos X/métodos , Anciano , Análisis de Varianza , Aterosclerosis/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Calcinosis/epidemiología , Humanos , Aneurisma Intracraneal/cirugía , Persona de Mediana Edad , Prevalencia , Medición de Riesgo , Muestreo , Índice de Severidad de la Enfermedad , Estadísticas no Paramétricas , Recolección de Tejidos y Órganos
18.
Neurosurg Focus ; 47(1): E16, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31261120

RESUMEN

OBJECTIVE: Incidental aneurysms pose a challenge for physicians, who need to weigh the rupture risk against the risks associated with treatment and its complications. A statistical model could potentially support such treatment decisions. A recently developed aneurysm rupture probability model performed well in the US data used for model training and in data from two European cohorts for external validation. Because Japanese and Finnish patients are known to have a higher aneurysm rupture risk, the authors' goals in the present study were to evaluate this model using data from Japanese and Finnish patients and to compare it with new models trained with Finnish and Japanese data. METHODS: Patient and image data on 2129 aneurysms in 1472 patients were used. Of these aneurysm cases, 1631 had been collected mainly from US hospitals, 249 from European (other than Finnish) hospitals, 147 from Japanese hospitals, and 102 from Finnish hospitals. Computational fluid dynamics simulations and shape analyses were conducted to quantitatively characterize each aneurysm's shape and hemodynamics. Next, the previously developed model's discrimination was evaluated using the Finnish and Japanese data in terms of the area under the receiver operating characteristic curve (AUC). Models with and without interaction terms between patient population and aneurysm characteristics were trained and evaluated including data from all four cohorts obtained by repeatedly randomly splitting the data into training and test data. RESULTS: The US model's AUC was reduced to 0.70 and 0.72, respectively, in the Finnish and Japanese data compared to 0.82 and 0.86 in the European and US data. When training the model with Japanese and Finnish data, the average AUC increased only slightly for the Finnish sample (to 0.76 ± 0.16) and Finnish and Japanese cases combined (from 0.74 to 0.75 ± 0.14) and decreased for the Japanese data (to 0.66 ± 0.33). In models including interaction terms, the AUC in the Finnish and Japanese data combined increased significantly to 0.83 ± 0.10. CONCLUSIONS: Developing an aneurysm rupture prediction model that applies to Japanese and Finnish aneurysms requires including data from these two cohorts for model training, as well as interaction terms between patient population and the other variables in the model. When including this information, the performance of such a model with Japanese and Finnish data is close to its performance with US or European data. These results suggest that population-specific differences determine how hemodynamics and shape associate with rupture risk in intracranial aneurysms.


Asunto(s)
Aneurisma Roto/epidemiología , Aneurisma Roto/patología , Hemodinámica , Adulto , Anciano , Aneurisma Roto/fisiopatología , Líquidos Corporales , Angiografía Cerebral , Angiografía por Tomografía Computarizada , Simulación por Computador , Bases de Datos Factuales , Femenino , Finlandia , Humanos , Hidrodinámica , Hallazgos Incidentales , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/epidemiología , Japón , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Probabilidad , Curva ROC
19.
Int J Comput Assist Radiol Surg ; 14(10): 1795-1804, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31054128

RESUMEN

PURPOSE: Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assumptions, the clinical acceptance of these methods remains limited. METHODS: To provide an overview of state-of-the-art blood flow simulation capabilities, the Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH) was conducted. Seventeen research groups from all over the world performed segmentations and hemodynamic simulations to identify the ruptured aneurysm in a patient harboring five IAs. Although simulation setups revealed good similarity, clear differences exist with respect to the analysis of aneurysm shape and blood flow results. Most groups (12/71%) included morphological and hemodynamic parameters in their analysis, with aspect ratio and wall shear stress as the most popular candidates, respectively. RESULTS: The majority of groups (7/41%) selected the largest aneurysm as being the ruptured one. Four (24%) of the participating groups were able to correctly select the ruptured aneurysm, while three groups (18%) ranked the ruptured aneurysm as the second most probable. Successful selections were based on the integration of clinically relevant information such as the aneurysm site, as well as advanced rupture probability models considering multiple parameters. Additionally, flow characteristics such as the quantification of inflow jets and the identification of multiple vortices led to correct predictions. CONCLUSIONS: MATCH compares state-of-the-art image-based blood flow simulation approaches to assess the rupture risk of IAs. Furthermore, this challenge highlights the importance of multivariate analyses by combining clinically relevant metadata with advanced morphological and hemodynamic quantification.


Asunto(s)
Aneurisma Roto/diagnóstico , Angiografía Cerebral , Aneurisma Intracraneal/diagnóstico , Modelos Cardiovasculares , Aneurisma Roto/fisiopatología , Angiografía Cerebral/métodos , Circulación Cerebrovascular/fisiología , Biología Computacional , Hemodinámica/fisiología , Humanos , Aneurisma Intracraneal/fisiopatología , Medición de Riesgo , Factores de Riesgo
20.
Int J Numer Method Biomed Eng ; 35(6): e3202, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30891958

RESUMEN

Modeling the flow dynamics in cerebral aneurysms after the implantation of intrasaccular devices is important for understanding the relationship between flow conditions created immediately posttreatment and the subsequent outcomes. This information, ideally available a priori based on computational modeling prior to implantation, is valuable to identify which aneurysms will occlude immediately and which aneurysms will likely remain patent and would benefit from a different procedure or device. In this report, a methodology for modeling the hemodynamics in intracranial aneurysms treated with intrasaccular flow diverting devices is described. This approach combines an image-guided, virtual device deployment within patient-specific vascular models with an immersed boundary method on adaptive unstructured grids. A partial mesh refinement strategy that reduces the number of mesh elements near the aneurysm dome where the flow conditions are largely stagnant was compared with the full refinement strategy that refines the mesh everywhere around the device wires. The results indicate that using the partial mesh refinement approach is adequate for analyzing the posttreatment hemodynamics, at a reduced computational cost. The results obtained on a series of four cerebral aneurysms treated with different intrasaccular devices were in good qualitative agreement with angiographic observations. Promising results were obtained relating posttreatment flow conditions and outcomes of treatments with intrasaccular devices, which need to be confirmed on larger series.


Asunto(s)
Prótesis Vascular , Procesamiento de Imagen Asistido por Computador , Aneurisma Intracraneal/fisiopatología , Modelos Biológicos , Flujo Sanguíneo Regional , Sáculo y Utrículo/diagnóstico por imagen , Anciano , Angiografía de Substracción Digital , Femenino , Hemodinámica , Humanos , Hidrodinámica , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...