Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Med Chem ; 65(19): 12725-12746, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36117290

RESUMEN

Targeted protein degradation (TPD) strategies exploit bivalent small molecules to bridge substrate proteins to an E3 ubiquitin ligase to induce substrate degradation. Few E3s have been explored as degradation effectors due to a dearth of E3-binding small molecules. We show that genetically induced recruitment to the GID4 subunit of the CTLH E3 complex induces protein degradation. An NMR-based fragment screen followed by structure-guided analog elaboration identified two binders of GID4, 16 and 67, with Kd values of 110 and 17 µM in vitro. A parallel DNA-encoded library (DEL) screen identified five binders of GID4, the best of which, 88, had a Kd of 5.6 µM in vitro and an EC50 of 558 nM in cells with strong selectivity for GID4. X-ray co-structure determination revealed the basis for GID4-small molecule interactions. These results position GID4-CTLH as an E3 for TPD and provide candidate scaffolds for high-affinity moieties that bind GID4.


Asunto(s)
ADN , Ubiquitina-Proteína Ligasas , ADN/metabolismo , Humanos , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
2.
Sci Adv ; 7(44): eabi5797, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705497

RESUMEN

Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.

3.
Structure ; 29(9): 975-988.e5, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33989513

RESUMEN

Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination. To gain insight into this poorly understood interaction, we have solved the 3.2 Å X-ray crystal structure of the N terminus of Skp2 bound to cyclin A. The structure reveals a bipartite mode of interaction with two motifs in Skp2 recognizing two discrete surfaces on cyclin A. The uncovered binding mechanism allows for a rationalization of the inhibitory effect of Skp2 on CDK2-cyclin A kinase activity toward the RxL motif containing substrates and raises the possibility that other intermolecular regulators and substrates may use similar non-canonical modes of interaction for cyclin targeting.


Asunto(s)
Ciclina A/metabolismo , Proteínas Quinasas Asociadas a Fase-S/química , Sitios de Unión , Ciclina A/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S/metabolismo
4.
Nat Commun ; 11(1): 6233, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277478

RESUMEN

The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


Asunto(s)
Proteínas Arqueales/química , Methanocaldococcus/metabolismo , Complejos Multiproteicos/química , ARN de Transferencia/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Methanocaldococcus/genética , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo
5.
Sci Immunol ; 5(52)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033173

RESUMEN

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Saliva/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , COVID-19 , Infecciones por Coronavirus/virología , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , SARS-CoV-2
6.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32778845

RESUMEN

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Talidomida , Ubiquitina , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Terapia Molecular Dirigida , Mutación , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Relación Estructura-Actividad , Talidomida/análogos & derivados , Talidomida/química , Ubiquitina/química
7.
J Mol Biol ; 432(4): 952-966, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31634471

RESUMEN

Ubiquitin-conjugating E2 enzymes are central to the ubiquitination cascade and have been implicated in cancer and other diseases. Despite strong interest in developing specific E2 inhibitors, the shallow and exposed active site has proven recalcitrant to targeting with reversible small-molecule inhibitors. Here, we used phage display to generate highly potent and selective ubiquitin variants (UbVs) that target the E2 backside, which is located opposite to the active site. A UbV targeting Ube2D1 did not affect charging but greatly attenuated chain elongation. Likewise, a UbV targeting the E2 variant Ube2V1 did not interfere with the charging of its partner E2 enzyme but inhibited formation of diubiquitin. In contrast, a UbV that bound to the backside of Ube2G1 impeded the generation of thioester-linked ubiquitin to the active site cysteine of Ube2G1 by the E1 enzyme. Crystal structures of UbVs in complex with three E2 proteins revealed distinctive molecular interactions in each case, but they also highlighted a common backside pocket that the UbVs used for enhanced affinity and specificity. These findings validate the E2 backside as a target for inhibition and provide structural insights to aid inhibitor design and screening efforts.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Inhibidores Enzimáticos/química , Humanos , Biblioteca de Péptidos , Unión Proteica , Ingeniería de Proteínas/métodos , Estructura Secundaria de Proteína , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitinación
8.
Structure ; 27(6): 1000-1012.e6, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31056421

RESUMEN

Pseudoenzymes have been identified across a diverse range of enzyme classes and fulfill important cellular functions. Examples of pseudoenzymes exist within ubiquitin conjugating and deubiquitinase (DUB) protein families. Here we characterize FAM105A/OTULINL, the only putative pseudodeubiquitinase of the ovarian tumor protease (OTU domain) family in humans. The crystal structure of FAM105A revealed that the OTU domain possesses structural deficiencies in both active site and substrate-binding infrastructure predicted to impair normal DUB function. We confirmed the absence of catalytic function against all ubiquitin linkages and an inability of FAM105A to bind ubiquitin compared with catalytically active FAM105B/OTULIN. FAM105A co-localized with KDEL markers and Lamin B1 at the endoplasmic reticulum (ER) and nuclear envelope, respectively. Accordingly, the FAM105A interactome exhibited significant enrichment in proteins localized to the ER/outer nuclear, Golgi and vesicular membranes. In light of undetectable deubiquitinase activity, we posit that FAM105A/OTULINL functions through its ability to mediate protein-protein interactions.


Asunto(s)
Enzimas Desubicuitinizantes/química , Endopeptidasas/química , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular Tumoral , Cristalografía por Rayos X , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
9.
Structure ; 27(4): 590-605.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30713027

RESUMEN

The multi-domain deubiquitinase USP15 regulates diverse eukaryotic processes and has been implicated in numerous diseases. We developed ubiquitin variants (UbVs) that targeted either the catalytic domain or each of three adaptor domains in USP15, including the N-terminal DUSP domain. We also designed a linear dimer (diUbV), which targeted the DUSP and catalytic domains, and exhibited enhanced specificity and more potent inhibition of catalytic activity than either UbV alone. In cells, the UbVs inhibited the deubiquitination of two USP15 substrates, SMURF2 and TRIM25, and the diUbV inhibited the effects of USP15 on the transforming growth factor ß pathway. Structural analyses revealed that three distinct UbVs bound to the catalytic domain and locked the active site in a closed, inactive conformation, and one UbV formed an unusual strand-swapped dimer and bound two DUSP domains simultaneously. These inhibitors will enable the study of USP15 function in oncology, neurology, immunology, and inflammation.


Asunto(s)
Factores de Transcripción/química , Factor de Crecimiento Transformador beta1/química , Proteínas de Motivos Tripartitos/química , Ubiquitina-Proteína Ligasas/química , Proteasas Ubiquitina-Específicas/química , Ubiquitina/química , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
10.
Nat Commun ; 9(1): 4385, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30349006

RESUMEN

The tumor suppressor and deubiquitinase (DUB) BAP1 and its Drosophila ortholog Calypso assemble DUB complexes with the transcription regulators Additional sex combs-like (ASXL1, ASXL2, ASXL3) and Asx respectively. ASXLs and Asx use their DEUBiquitinase ADaptor (DEUBAD) domain to stimulate BAP1/Calypso DUB activity. Here we report that monoubiquitination of the DEUBAD is a general feature of ASXLs and Asx. BAP1 promotes DEUBAD monoubiquitination resulting in an increased stability of ASXL2, which in turn stimulates BAP1 DUB activity. ASXL2 monoubiquitination is directly catalyzed by UBE2E family of Ubiquitin-conjugating enzymes and regulates mammalian cell proliferation. Remarkably, Calypso also regulates Asx monoubiquitination and transgenic flies expressing monoubiquitination-defective Asx mutant exhibit developmental defects. Finally, the protein levels of ASXL2, BAP1 and UBE2E enzymes are highly correlated in mesothelioma tumors suggesting the importance of this signaling axis for tumor suppression. We propose that monoubiquitination orchestrates a molecular symbiosis relationship between ASXLs and BAP1.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Inmunoprecipitación , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/genética , Ubiquitinación/fisiología
11.
BMC Biol ; 16(1): 88, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097011

RESUMEN

BACKGROUND: The ubiquitin-proteasome system (UPS) controls the stability, localization and/or activity of the proteome. However, the identification and characterization of complex individual ubiquitination cascades and their modulators remains a challenge. Here, we report a broadly applicable, multiplexed, miniaturized on-bead technique for real-time monitoring of various ubiquitination-related enzymatic activities. The assay, termed UPS-confocal fluorescence nanoscanning (UPS-CONA), employs a substrate of interest immobilized on a micro-bead and a fluorescently labeled ubiquitin which, upon enzymatic conjugation to the substrate, is quantitatively detected on the bead periphery by confocal imaging. RESULTS: UPS-CONA is suitable for studying individual enzymatic activities, including various E1, E2, and HECT-type E3 enzymes, and for monitoring multi-step reactions within ubiquitination cascades in a single experimental compartment. We demonstrate the power of the UPS-CONA technique by simultaneously following ubiquitin transfer from Ube1 through Ube2L3 to E6AP. We applied this multi-step setup to investigate the selectivity of five ubiquitination inhibitors reportedly targeting different classes of ubiquitination enzymes. Using UPS-CONA, we have identified a new activity of a small molecule E2 inhibitor, BAY 11-7082, and of a HECT E3 inhibitor, heclin, towards the Ube1 enzyme. CONCLUSIONS: As a sensitive, quantitative, flexible, and reagent-efficient method with a straightforward protocol, UPS-CONA constitutes a powerful tool for interrogation of ubiquitination-related enzymatic pathways and their chemical modulators, and is readily scalable for large experiments.


Asunto(s)
Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Complejo de la Endopetidasa Proteasomal/química , Ubiquitinación , Humanos , Microscopía Confocal/instrumentación , Microscopía Fluorescente/instrumentación
12.
Mol Cell ; 59(6): 970-83, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26344097

RESUMEN

BRCC36 is a Zn(2+)-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN(+) domain protein BRCC36 associates with pseudo DUB MPN(-) proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. To understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer of heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. These data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function.


Asunto(s)
Hormigas/enzimología , Proteínas de Insectos/química , Proteínas Asociadas a Matriz Nuclear/química , Proteasas Ubiquitina-Específicas/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Enzimas Desubicuitinizantes , Células HEK293 , Células HeLa , Humanos , Proteínas de Insectos/fisiología , Cinética , Proteínas de la Membrana/química , Modelos Moleculares , Proteínas Asociadas a Matriz Nuclear/fisiología , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteasas Ubiquitina-Específicas/fisiología
13.
Cell Signal ; 26(9): 1825-36, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24815189

RESUMEN

The protein kinase Rad53 is a key regulator of the DNA damage checkpoint in budding yeast. Its human ortholog, CHEK2, is mutated in familial breast cancer and mediates apoptosis in response to genotoxic stress. Autophosphorylation of Rad53 at residue Thr354 located in the kinase activation segment is essential for Rad53 activation. In this study, we assessed the requirement of kinase domain dimerization and the exchange of its activation segment during the Rad53 activation process. We solved the crystal structure of Rad53 in its dimeric form and found that disruption of the observed head-to-tail, face-to-face dimer structure decreased Rad53 autophosphorylation on Thr354 in vitro and impaired Rad53 function in vivo. Moreover, we provide critical functional evidence that Rad53 trans-autophosphorylation may involve the interkinase domain exchange of helix αEF via an invariant salt bridge. These findings suggest a mechanism of autophosphorylation that may be broadly applicable to other protein kinases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/química , Quinasa de Punto de Control 2/genética , Cristalografía por Rayos X , Dimerización , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutación , Fosforilación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Ultracentrifugación
14.
Mol Cell ; 53(2): 221-34, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24462203

RESUMEN

RNase L is an ankyrin repeat domain-containing dual endoribonuclease-pseudokinase that is activated by unusual 2,'5'-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon-regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small-angle X-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the nonhydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain, together with nucleotide binding, imposes a rigid intertwined dimer configuration that is essential for RNase catalytic and antiviral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold.


Asunto(s)
Nucleótidos de Adenina/química , Endorribonucleasas/química , Oligorribonucleótidos/química , Adenosina Difosfato/química , Adenilil Imidodifosfato/química , Animales , Repetición de Anquirina , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Virus de la Encefalomiocarditis , Endorribonucleasas/genética , Endorribonucleasas/fisiología , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Picornaviridae , Estructura Terciaria de Proteína , Dispersión de Radiación , Relación Estructura-Actividad , Sus scrofa
15.
Nat Chem Biol ; 10(2): 156-163, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24316736

RESUMEN

Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small-molecule inhibitor of the E2 ubiquitin-conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin-binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester without decreasing the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities.


Asunto(s)
Aminoácidos/química , Compuestos de Bifenilo/química , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Ubiquitina/química , Aminoácidos/farmacología , Sitios de Unión , Compuestos de Bifenilo/farmacología , Complejos de Coordinación/química , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
16.
Nature ; 498(7454): 318-24, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23708998

RESUMEN

A complex interaction of signalling events, including the Wnt pathway, regulates sprouting of blood vessels from pre-existing vasculature during angiogenesis. Here we show that two distinct mutations in the (uro)chordate-specific gumby (also called Fam105b) gene cause an embryonic angiogenic phenotype in gumby mice. Gumby interacts with disheveled 2 (DVL2), is expressed in canonical Wnt-responsive endothelial cells and encodes an ovarian tumour domain class of deubiquitinase that specifically cleaves linear ubiquitin linkages. A crystal structure of gumby in complex with linear diubiquitin reveals how the identified mutations adversely affect substrate binding and catalytic function in line with the severity of their angiogenic phenotypes. Gumby interacts with HOIP (also called RNF31), a key component of the linear ubiquitin assembly complex, and decreases linear ubiquitination and activation of NF-κB-dependent transcription. This work provides support for the biological importance of linear (de)ubiquitination in angiogenesis, craniofacial and neural development and in modulating Wnt signalling.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Neovascularización Fisiológica , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cristalografía por Rayos X , Proteínas Dishevelled , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Endopeptidasas/deficiencia , Endopeptidasas/genética , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Neovascularización Fisiológica/genética , Fenotipo , Fosfoproteínas/metabolismo , Conformación Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt
17.
J Biol Chem ; 287(35): 29285-9, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22782892

RESUMEN

The TrkA receptor tyrosine kinase induces death in medulloblastoma cells via an interaction with the cerebral cavernous malformation 2 (CCM2) protein. We used affinity proteomics to identify the germinal center kinase class III (GCKIII) kinases STK24 and STK25 as novel CCM2 interactors. Down-modulation of STK25, but not STK24, rescued medulloblastoma cells from NGF-induced TrkA-dependent cell death, suggesting that STK25 is part of the death-signaling pathway initiated by TrkA and CCM2. CCM2 can be phosphorylated by STK25, and the kinase activity of STK25 is required for death signaling. Finally, STK25 expression in tumors is correlated with positive prognosis in neuroblastoma patients. These findings delineate a death-signaling pathway downstream of neurotrophic receptor tyrosine kinases that may provide targets for therapeutic intervention in pediatric tumors of neural origin.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meduloblastoma/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor trkA/metabolismo , Transducción de Señal , Adolescente , Animales , Proteínas Portadoras/genética , Muerte Celular , Línea Celular Tumoral , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Receptor trkA/genética
18.
Mol Cell ; 45(3): 384-97, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325355

RESUMEN

Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibited E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Ubiquitinadas/metabolismo , Sustitución de Aminoácidos , Línea Celular , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Enzimas Desubicuitinizantes , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Organismos Modificados Genéticamente , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación , Levaduras/genética , Levaduras/crecimiento & desarrollo
19.
Cell Signal ; 24(2): 476-483, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21983015

RESUMEN

Transforming growth factor-ß (TGFß) receptor kinase inhibitors have a great therapeutic potential. SB431542 is one of the mainly used kinase inhibitors of the TGFß/Activin pathway receptors, but needs improvement of its EC(50) (EC(50)=1 µM) to be translated to clinical use. A key feature of SB431542 is that it specifically targets receptors from the TGFß/Activin pathway but not the closely related receptors from the bone morphogenic proteins (BMP) pathway. To understand the mechanisms of this selectivity, we solved the crystal structure of the TGFß type I receptor (TßRI) kinase domain in complex with SB431542. We mutated TßRI residues coordinating SB431542 to their counterparts in activin-receptor like kinase 2 (ALK2), a BMP receptor kinase, and tested the kinase activity of mutated TßRI. We discovered that a Ser280Thr mutation yielded a TßRI variant that was resistant to SB431542 inhibition. Furthermore, the corresponding Thr283Ser mutation in ALK2 yielded a BMP receptor sensitive to SB431542. This demonstrated that Ser280 is the key determinant of selectivity for SB431542. This work provides a framework for optimising the SB431542 scaffold to more potent and selective inhibitors of the TGFß/Activin pathway.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Benzamidas/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Dioxoles/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Serina/metabolismo , Transducción de Señal , Receptores de Activinas Tipo I/antagonistas & inhibidores , Receptores de Activinas Tipo I/química , Receptores de Activinas Tipo I/genética , Activinas/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Proteínas Morfogenéticas Óseas/química , Proteínas Morfogenéticas Óseas/genética , Cristalografía por Rayos X , Dioxoles/química , Dioxoles/metabolismo , Diseño de Fármacos , Células HEK293 , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Mutación , Fosforilación , Plásmidos , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/genética , Serina/genética , Especificidad por Sustrato , Transfección , Factor de Crecimiento Transformador beta/metabolismo
20.
Curr Biol ; 22(1): 64-9, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22197245

RESUMEN

Cell division is achieved by a plasma membrane furrow that must ingress between the segregating chromosomes during anaphase [1-3]. The force that drives furrow ingression is generated by the actomyosin cytoskeleton, which is linked to the membrane by an as yet undefined molecular mechanism. A key component of the membrane furrow is anillin. Upon targeting to the furrow through its pleckstrin homology (PH) domain, anillin acts as a scaffold linking the actomyosin and septin cytoskeletons to maintain furrow stability (reviewed in [4, 5]). We report that the PH domain of anillin interacts with phosphatidylinositol phosphate lipids (PIPs), including PI(4,5)P(2), which is enriched in the furrow. Reduction of cellular PI(4,5)P(2) or mutations in the PH domain of anillin that specifically disrupt the interaction with PI(4,5)P(2), interfere with the localization of anillin to the furrow. Reduced expression of anillin disrupts symmetric furrow ingression that can be restored by targeting ectopically expressed anillin to the furrow using an alternate PI(4,5)P(2) binding module, a condition where the septin cytoskeleton is not recruited to the plasma membrane. These data demonstrate that the anillin PH domain has two functions: targeting anillin to the furrow by binding to PI(4,5)P(2) to maintain furrow organization and recruiting septins to the furrow.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Contráctiles/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Actinas/metabolismo , Animales , Sitios de Unión , Proteínas Sanguíneas/química , Membrana Celular/genética , Membrana Celular/ultraestructura , Proteínas Contráctiles/química , Proteínas Contráctiles/genética , Citocinesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Mutación , Fosfatidilinositol 4,5-Difosfato , Fosfoproteínas/química , Estructura Terciaria de Proteína , Septinas/genética , Septinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA