Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Negl Trop Dis ; 18(4): e0012111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626188

RESUMEN

BACKGROUND: Human African trypanosomiasis (HAT) is a neglected tropical disease that usually occurs in rural areas in sub-Saharan Africa. It caused devastating epidemics during the 20th century. Sustained, coordinated efforts by different stakeholders working with national sleeping sickness control programmes (NSSCPs) succeeded in controlling the disease and reducing the number of cases to historically low levels. In 2012, WHO targeted the elimination of the disease as a public health problem by 2020. This goal has been reached and a new ambitious target was stated in the WHO road map for NTDs 2021-2030 and endorsed by the 73rd World Health Assembly: the elimination of gambiense HAT transmission (i.e. reducing the number of reported cases to zero). The interruption of transmission was not considered as an achievable goal for rhodesiense HAT, as it would require vast veterinary interventions rather than actions at the public health level. METHODOLOGY/PRINCIPAL FINDINGS: Data reported to WHO by NSSCPs were harmonized, verified, georeferenced and included in the atlas of HAT. A total of 802 cases were reported in 2021 and 837 in 2022. This is below the target for elimination as a public health problem at the global level (< 2000 HAT cases/year); 94% of the cases were caused by infection with T. b. gambiense. The areas reporting ≥ 1 HAT case/10 000 inhabitants/year in 2018-2022 cover a surface of 73 134 km2, with only 3013 km2 at very high or high risk. This represents a reduction of 90% from the baseline figure for 2000-2004, the target set for the elimination of HAT as a public health problem. For the surveillance of the disease, 4.5 million people were screened for gambiense HAT with serological tests in 2021-2022, 3.6 million through active screening and 0.9 million by passive screening. In 2021 and 2022 the elimination of HAT as a public health problem was validated in Benin, Uganda, Equatorial Guinea and Ghana for gambiense HAT and in Rwanda for rhodesiense HAT. To reach the next goal of elimination of transmission of gambiense HAT, countries have to report zero cases of human infection with T. b. gambiense for a period of at least 5 consecutive years. The criteria and procedures to verify elimination of transmission have been recently published by WHO. CONCLUSIONS/SIGNIFICANCE: HAT elimination as a public health problem has been reached at global level, with seven countries already validated as having reached this goal. This achievement was made possible by the work of NSSCPs, supported by different public and private partners, and coordinated by WHO. The new challenging goal now is to reach zero cases by 2030. To reach this goal is crucial to maintain the engagement and support of donors and stakeholders and to keep the involvement and coordination of all partners. Along with the focus on elimination of transmission of gambiense HAT, it is important not to neglect rhodesiense HAT, which is targeted for elimination as a public health problem in the WHO road map for NTDs 2021-2030.


Asunto(s)
Erradicación de la Enfermedad , Tripanosomiasis Africana , Organización Mundial de la Salud , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/transmisión , Humanos , Trypanosoma brucei gambiense , África del Sur del Sahara/epidemiología , Enfermedades Desatendidas/prevención & control , Enfermedades Desatendidas/epidemiología , Animales , Monitoreo Epidemiológico
2.
Animals (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254411

RESUMEN

Trypanosomosis is a global animal issue, causing significant economic losses, particularly in Africa. In Spain, only one pathogenic species, Trypanosoma evansi, has been identified so far. It was first detected in a dromedary camel in the Canary Islands in 1997. Since then, numerous cases of the disease, known as Surra, have been diagnosed, prompting various studies and efforts in control and surveillance. Given the lack of a comprehensive database that consolidates the most relevant data in this area, the development of a national atlas, with a focus on the Canary Islands, to incorporate all available information on T. evansi in Spain became a necessity. For the development of the atlas, a repository was constructed, encompassing a range of datasets and documents spanning from 1997 to 2022. Information from each source, and in particular georeferenced locations and results of blood tests on animals, were extracted and integrated into a comprehensive database. A total of 31 sources were analysed, providing a total of 99 georeferenced locations and 12,433 animal samples. Out of these samples, 601 (mostly from dromedaries) were found to be positive for T. evansi. The Card Agglutination Test for T. evansi (CATT/T. evansi), a serological test, was the most commonly used diagnostic method, and it showed a higher prevalence for all tested animal species. Positive cases were mainly concentrated in the Canary Islands, specifically in the eastern islands, with isolated cases found in the province of Alicante (Iberian Peninsula). This atlas provides an overview of the history and occurrence of Surra in Spain, and it represents a valuable tool for future control initiatives and for research. Still, the need for more studies remains, especially for further testing of potential hosts other than camelids and for the examination of their potential transmission vectors.

3.
Sci Rep ; 13(1): 20337, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37990067

RESUMEN

African animal trypanosomiasis (AAT) is one of the major constraints to animal health and production in sub-Saharan Africa. To inform AAT control in Uganda and help advance along the progressive control pathway (PCP), we characterized AAT prevalence among eight host species in Uganda and explored factors that influence the prevalence variation between studies. We retrieved AAT prevalence publications (n = 2232) for Uganda (1980-2022) from five life sciences databases, focusing on studies specifying AAT detection methods, sample size, and the number of trypanosome-positive animals. Following PRISMA guidelines, we included 56 publications, and evaluated publication bias by the Luis Furuya-Kanamori (LFK) index. National AAT prevalence under DNA diagnostic methods for cattle, sheep and goats was 22.15%, 8.51% and 13.88%, respectively. Under DNA diagnostic methods, T. vivax was the most common Trypanosoma sp. in cattle (6.15%, 95% CI: 2.91-10.45) while T. brucei was most common among small ruminants (goats: 8.78%, 95% CI: 1.90-19.88, and sheep: 8.23%, 95% CI: 4.74-12.50, respectively). Northern and Eastern regions accounted for the highest AAT prevalence. Despite the limitations of this study (i.e., quality of reviewed studies, underrepresentation of districts/regions), we provide insights that could be used for better control of AAT in Uganda and identify knowledge gaps that need to be addressed to support the progressive control of AAT at country level and other regional endemic countries with similar AAT eco-epidemiology.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Bovinos , Ovinos , Animales Domésticos , Ganado , Prevalencia , Uganda/epidemiología , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/veterinaria , Trypanosoma/genética , Rumiantes , Cabras , ADN
4.
One Health ; 16: 100550, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363264

RESUMEN

Akagera National Park and its surroundings are home to tsetse flies and a number of their mammalian hosts in Rwanda. A One-health approach is being used in the control and surveillance of both animal and human trypanosomosis in Rwanda. Determination of the infection level in tsetse flies, species of trypanosomes circulating in vectors, the source of tsetse blood meal and endosymbionts is crucial in understanding the epidemiology of the disease in animals and humans in the region. Tsetse flies (n = 1101), comprising Glossina pallidipes (n = 771) and Glossina morsitans centralis (n = 330) were collected from Akagera park and surrounding areas between May 2018 and June 2019. The flies were screened for trypanosomes, vertebrate host DNA to identify sources of blood meal, and endosymbionts by PCR - High Resolution Melting analysis and amplicon sequencing. The feeding frequency and the feeding indices (selection index - W) were calculated to identify the preferred hosts. An overall trypanosome infection rate of 13.9% in the fly's Head and Proboscis (HP) and 24.3% in the Thorax and Abdomen (TA) were found. Eight trypanosome species were identified in the tsetse fly HP and TA, namely: Trypanosoma (T.) brucei brucei, T. congolense Kilifi, T. congolense savannah, T. vivax, T. simiae, T. evansi, T. godfreyi, T. grayi and T. theileri. We found no evidence of human-infective T. brucei rhodesiense. We also identified eighteen species of vertebrate hosts that tsetse flies fed on, and the most frequent one was the buffalo (Syncerus caffer) (36.5%). The frequently detected host by selection index was the rhinoceros (Diceros bicornis) (W = 16.2). Most trypanosome infections in tsetse flies were associated with the buffalo blood meal. The prevalence of tsetse endosymbionts Sodalis and Wolbachia was 2.8% and 4.8%, respectively. No Spiroplasma and Salivary Gland Hypertrophy Virus were detected. These findings implicate the buffaloes as the important reservoirs of tsetse-transmitted trypanosomes in the area. This contributes to predicting the main cryptic reservoirs and therefore guiding the effective control of the disease. The study findings provide the key scientific information that supports the current One Health collaboration in the control and surveillance of tsetse-transmitted trypanosomosis in Rwanda.

5.
Parasit Vectors ; 15(1): 491, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578020

RESUMEN

BACKGROUND: With the largest cattle population in Africa and vast swathes of fertile lands infested by tsetse flies, trypanosomosis is a major challenge for Ethiopian farmers. Managing the problem strategically and rationally requires comprehensive and detailed information on disease and vector distribution at the national level. To this end, the National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT) developed a national atlas of tsetse and African animal trypanosomosis (AAT) for Ethiopia. METHODS: This first edition of the atlas focused on the tsetse-infested areas in western Ethiopia. Data were collected between 2010 and 2019 in the framework of national surveillance and control activities. Over 88,000 animals, mostly cattle, were tested with the buffy-coat technique (BCT). Odour-enhanced traps were deployed in approximately 14,500 locations for the entomological surveys. Animal- and trap-level data were geo-referenced, harmonized and centralized in a single database. RESULTS: AAT occurrence was confirmed in 86% of the districts surveyed (107/124). An overall prevalence of 4.8% was detected by BCT in cattle. The mean packed cell volume (PCV) of positive animals was 22.4, compared to 26.1 of the negative. Trypanosoma congolense was responsible for 61.9% of infections, T. vivax for 35.9% and T. brucei for 1.7%. Four tsetse species were found to have a wide geographic distribution. The highest apparent density (AD) was reported for Glossina pallidipes in the Southern Nations, Nationalities and People's Region (SNNPR) (3.57 flies/trap/day). Glossina tachinoides was the most abundant in Amhara (AD 2.39), Benishangul-Gumuz (2.38), Gambela (1.16) and Oromia (0.94) regions. Glossina fuscipes fuscipes and G. morsitans submorsitans were detected at lower densities (0.19 and 0.42 respectively). Only one specimen of G. longipennis was captured. CONCLUSIONS: The atlas establishes a reference for the distribution of tsetse and AAT in Ethiopia. It also provides crucial evidence to plan surveillance and monitor control activities at the national level. Future work on the atlas will focus on the inclusion of data collected by other stakeholders, the broadening of the coverage to tsetse-free areas and continuous updates. The extension of the atlas to data on control activities is also envisaged.


Asunto(s)
Tripanosomiasis Africana , Tripanosomiasis , Moscas Tse-Tse , Animales , Bovinos , Etiopía/epidemiología , Insectos Vectores , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/veterinaria
6.
PLoS Negl Trop Dis ; 16(11): e0010885, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36342910

RESUMEN

BACKGROUND: Sleeping sickness, or human African trypanosomiasis (HAT), is transmitted by tsetse flies in endemic foci in sub-Saharan Africa. Because of international travel and population movements, cases are also occasionally diagnosed in non-endemic countries. METHODOLOGY/PRINCIPAL FINDINGS: Antitrypanosomal medicines to treat the disease are available gratis through the World Health Organization (WHO) thanks to a public-private partnership, and exclusive distribution of the majority of them enables WHO to gather information on all exported cases. Data collected by WHO are complemented by case reports and scientific publications. During 2011-2020, 49 cases of HAT were diagnosed in 16 non-endemic countries across five continents: 35 cases were caused by Trypanosoma brucei rhodesiense, mainly in tourists visiting wildlife areas in eastern and southern Africa, and 14 cases were due to T. b. gambiense, mainly in African migrants originating from or visiting endemic areas in western and central Africa. CONCLUSIONS/SIGNIFICANCE: HAT diagnosis in non-endemic countries is rare and can be challenging, but alertness and surveillance must be maintained to contribute to WHO's elimination goals. Early detection is particularly important as it considerably improves the prognosis.


Asunto(s)
Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Humanos , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/terapia , Trypanosoma brucei rhodesiense , Población Negra , África Austral , Trypanosoma brucei gambiense
7.
Parasit Vectors ; 15(1): 72, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246216

RESUMEN

BACKGROUND: African animal trypanosomosis (AAT), transmitted by tsetse flies, is arguably the main disease constraint to integrated crop-livestock agriculture in sub-Saharan Africa, and African heads of state and governments adopted a resolution to rid the continent of this scourge. In order to sustainably reduce or eliminate the burden of AAT, a progressive and evidence-based approach is needed, which must hinge on harmonized, spatially explicit information on the occurrence of AAT and its vectors. METHODS: A digital repository was assembled, containing tsetse and AAT data collected in Burkina Faso between 1990 and 2019. Data were collected either in the framework of control activities or for research purposes. Data were systematically verified, harmonized, georeferenced and integrated into a database (PostgreSQL). Entomological data on tsetse were mapped at the level of individual monitoring traps. When this was not possible, mapping was done at the level of site or location. Epidemiological data on AAT were mapped at the level of location or village. RESULTS: Entomological data showed the presence of four tsetse species in Burkina Faso. Glossina tachinoides, present from the eastern to the western part of the country, was the most widespread and abundant species (56.35% of the catches). Glossina palpalis gambiensis was the second most abundant species (35.56%), and it was mainly found in the west. Glossina morsitans submorsitans was found at lower densities (6.51%), with a patchy distribution in the southern parts of the country. A single cluster of G. medicorum was detected (less than 0.25%), located in the south-west. Unidentified tsetse flies accounted for 1.33%. For the AAT component, data for 54,948 animal blood samples were assembled from 218 geographic locations. The samples were tested with a variety of diagnostic methods. AAT was found in all surveyed departments, including the tsetse-free areas in the north. Trypanosoma vivax and T. congolense infections were the dominant ones, with a prevalence of 5.19 ± 18.97% and 6.11 ± 21.56%, respectively. Trypanosoma brucei infections were detected at a much lower rate (0.00 ± 0.10%). CONCLUSIONS: The atlas provides a synoptic view of the available information on tsetse and AAT distribution in Burkina Faso. Data are very scanty for most of the tsetse-free areas in the northern part of the country. Despite this limitation, this study generated a robust tool for targeting future surveillance and control activities. The development of the atlas also strengthened the collaboration between the different institutions involved in tsetse and AAT research and control in Burkina Faso, which will be crucial for future updates and the sustainability of the initiative.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Burkina Faso/epidemiología , Insectos Vectores , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/veterinaria
8.
PLoS Negl Trop Dis ; 16(1): e0010047, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041668

RESUMEN

BACKGROUND: In the 20th century, epidemics of human African trypanosomiasis (HAT) ravaged communities in a number of African countries. The latest surge in disease transmission was recorded in the late 1990s, with more than 35,000 cases reported annually in 1997 and 1998. In 2013, after more than a decade of sustained control efforts and steady progress, the World Health Assembly resolved to target the elimination of HAT as a public health problem by 2020. We report here on recent progress towards this goal. METHODOLOGY/PRINCIPAL FINDINGS: With 992 and 663 cases reported in 2019 and 2020 respectively, the first global target was amply achieved (i.e. fewer than 2,000 HAT cases/year). Areas at moderate or higher risk of HAT, where more than 1 case/10,000 people/year are reported, shrunk to 120,000 km2 for the five-year period 2016-2020. This reduction of 83% from the 2000-2004 baseline (i.e. 709,000 km2) is slightly below the target (i.e. 90% reduction). As a result, the second global target for HAT elimination as a public health problem cannot be considered fully achieved yet. The number of health facilities able to diagnose and treat HAT expanded (+9.6% compared to a 2019 survey), thus reinforcing the capacity for passive detection and improving epidemiological knowledge of the disease. Active surveillance for gambiense HAT was sustained. In particular, 2.8 million people were actively screened in 2019 and 1.6 million in 2020, the decrease in 2020 being mainly caused by COVID-19-related restrictions. Togo and Côte d'Ivoire were the first countries to be validated for achieving elimination of HAT as a public health problem at the national level; applications from three additional countries are under review by the World Health Organization (WHO). CONCLUSIONS/SIGNIFICANCE: The steady progress towards the elimination of HAT is a testament to the power of multi-stakeholder commitment and coordination. At the end of 2020, the World Health Assembly endorsed a new road map for 2021-2030 that set new bold targets for neglected tropical diseases. While rhodesiense HAT remains among the diseases targeted for elimination as a public health problem, gambiense HAT is targeted for elimination of transmission. The goal for gambiense HAT is expected to be particularly arduous, as it might be hindered by cryptic reservoirs and a number of other challenges (e.g. further integration of HAT surveillance and control into national health systems, availability of skilled health care workers, development of more effective and adapted tools, and funding for and coordination of elimination efforts).


Asunto(s)
Trypanosoma brucei brucei/patogenicidad , Trypanosoma brucei gambiense/patogenicidad , Trypanosoma brucei rhodesiense/patogenicidad , Tripanosomiasis Africana/prevención & control , África del Sur del Sahara/epidemiología , Animales , Enfermedades Endémicas , Humanos , Control de Insectos , Insectos Vectores/parasitología , Tripanosomiasis Africana/epidemiología , Moscas Tse-Tse/parasitología , Organización Mundial de la Salud
9.
Open Res Eur ; 2: 67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37645305

RESUMEN

Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.

10.
PLoS Negl Trop Dis ; 15(12): e0009929, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910728

RESUMEN

BACKGROUND: African Trypanosomiases threaten the life of both humans and animals. Trypanosomes are transmitted by tsetse and other biting flies. In Rwanda, the African Animal Trypanosomiasis (AAT) endemic area is mainly around the tsetse-infested Akagera National Park (NP). The study aimed to identify Trypanosoma species circulating in cattle, their genetic diversity and distribution around the Akagera NP. METHODOLOGY: A cross-sectional study was carried out in four districts, where 1,037 cattle blood samples were collected. The presence of trypanosomes was determined by microscopy, immunological rapid test VerY Diag and PCR coupled with High-Resolution Melt (HRM) analysis. A parametric test (ANOVA) was used to compare the mean Packed cell Volume (PCV) and trypanosomes occurrence. The Cohen Kappa test was used to compare the level of agreement between the diagnostic methods. FINDINGS: The overall prevalence of trypanosome infections was 5.6%, 7.1% and 18.7% by thin smear, Buffy coat technique and PCR/HRM respectively. Microscopy showed a low sensitivity while a low specificity was shown by the rapid test (VerY Diag). Trypanosoma (T.) congolense was found at a prevalence of 10.7%, T. vivax 5.2%, T. brucei brucei 2% and T. evansi 0.7% by PCR/HRM. This is the first report of T.evansi in cattle in Rwanda. The non-pathogenic T. theileri was also detected. Lower trypanosome infections were observed in Ankole x Friesian breeds than indigenous Ankole. No human-infective T. brucei rhodesiense was detected. There was no significant difference between the mean PCV of infected and non-infected animals (p>0.162). CONCLUSIONS: Our study sheds light on the species of animal infective trypanosomes around the Akagera NP, including both pathogenic and non-pathogenic trypanosomes. The PCV estimation is not always an indication of trypanosome infection and the mechanical transmission should not be overlooked. The study confirms that the area around the Akagera NP is affected by AAT, and should, therefore, be targeted by the control activities. AAT impact assessment on cattle production and information on the use of trypanocides are needed to help policymakers prioritise target areas and optimize intervention strategies. Ultimately, these studies will allow Rwanda to advance in the Progressive Control Pathway (PCP) to reduce or eliminate the burden of AAT.


Asunto(s)
Biodiversidad , Enfermedades de los Bovinos/parasitología , Trypanosoma/aislamiento & purificación , Tripanosomiasis Africana/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisión , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Parques Recreativos , Filogenia , Rwanda/epidemiología , Trypanosoma/clasificación , Trypanosoma/genética , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/parasitología , Moscas Tse-Tse/fisiología
11.
Front Genet ; 12: 715732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413881

RESUMEN

Livestock is heavily affected by trypanosomosis in Africa. Through strong selective pressure, several African indigenous breeds of cattle and small ruminants have acquired varying degrees of tolerance against this disease. In this study, we combined LFMM and PCAdapt for analyzing two datasets of goats from West-Central Africa and East Africa, respectively, both comprising breeds with different assumed levels of trypanotolerance. The objectives were (i) to identify molecular signatures of selection related to trypanotolerance; and (ii) to guide an optimal sampling for subsequent studies. From 33 identified signatures, 18 had been detected previously in the literature as being mainly associated with climatic adaptations. The most plausible signatures of trypanotolerance indicate the genes DIS3L2, COPS7B, PD5A, UBE2K, and UBR1. The last gene is of particular interest since previous literature has already identified E3-ubiquitin ligases as playing a decisive role in the immune response. For following-up on these findings, the West-Central African area appears particularly relevant because of (i) a clear parasitic load gradient related to a humidity gradient, and (ii) still restricted admixture levels between goat breeds. This study illustrates the importance of protecting local breeds, which have retained unique allelic combinations conferring their remarkable adaptations.

12.
Parasit Vectors ; 14(1): 294, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078446

RESUMEN

BACKGROUND: Glossina (tsetse flies) biologically transmit trypanosomes that infect both humans and animals. Knowledge of their distribution patterns is a key element to better understand the transmission dynamics of trypanosomosis. Tsetse distribution in Rwanda has not been well enough documented, and little is known on their current distribution. This study determined the current spatial distribution, abundance, diversity, and seasonal variations of tsetse flies in and around the Akagera National Park. METHODS: A longitudinal stratified sampling following the seasons was used. Biconical traps were deployed in 55 sites for 6 consecutive days of each study month from May 2018 to June 2019 and emptied every 48 h. Flies were identified using FAO keys, and the number of flies per trap day (FTD) was used to determine the apparent density. Pearson chi-square (χ2) and parametrical tests (t-test and ANOVA) were used to determine the variations between the variables. The significance (p < 0.05) at 95% confidence interval was considered. Logistic regression was used to determine the association between tsetse occurrence and the associated predictors. RESULTS: A total of 39,516 tsetse flies were collected, of which 73.4 and 26.6% were from inside Akagera NP and the interface area, respectively. Female flies accounted for 61.3 while 38.7% were males. Two species were identified, i.e. G. pallidipes [n = 29,121, 7.4 flies/trap/day (FTD)] and G. morsitans centralis (n = 10,395; 2.6 FTD). The statistical difference in numbers was significant between the two species (p = 0.000). The flies were more abundant during the wet season (15.8 FTD) than the dry season (4.2 FTD). Large numbers of flies were trapped around the swamp areas (69.1 FTD) inside the park and in Nyagatare District (11.2 FTD) at the interface. Glossina morsitans was 0.218 times less likely to occur outside the park. The chance of co-existing between the two species reduced outside the protected area (0.021 times). CONCLUSIONS: The occurrence of Glossina seems to be limited to the protected Akagera NP and a narrow band of its surrounding areas. This finding will be crucial to design appropriate control strategies. Glossina pallidipes was found in higher numbers and therefore is conceivably the most important vector of trypanosomosis. Regional coordinated control and regular monitoring of Glossina distribution are recommended.


Asunto(s)
Distribución Animal , Animales Salvajes/parasitología , Ganado/parasitología , Parques Recreativos , Moscas Tse-Tse/fisiología , Animales , Bovinos , Femenino , Insectos Vectores/parasitología , Estudios Longitudinales , Masculino , Rwanda , Estaciones del Año , Tripanosomiasis Bovina/epidemiología , Tripanosomiasis Bovina/transmisión
13.
Parasit Vectors ; 14(1): 50, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446276

RESUMEN

BACKGROUND: In the 1980s and 1990s, great strides were taken towards the elimination of tsetse and animal African trypanosomiasis (AAT) in Zimbabwe. However, advances in recent years have been limited. Previously freed areas have been at risk of reinvasion, and the disease in tsetse-infested areas remains a constraint to food security. As part of ongoing control activities, monitoring of tsetse and AAT is performed regularly in the main areas at risk. However, a centralized digital archive is missing. To fill this gap, a spatially explicit, national-level database of tsetse and AAT (i.e. atlas) was established through systematic data collation, harmonization and geo-referencing for the period 2000-2019. METHODS: The atlas covers an area of approximately 70,000 km2, located mostly in the at-risk areas in the north of the country. In the tsetse component, a total of 33,872 entomological records were assembled for 4894 distinct trap locations. For the AAT component, 82,051 samples (mainly dry blood smears from clinically suspicious animals) were collected at 280 diptanks and examined for trypanosomal infection by microscopy. RESULTS: Glossina pallidipes (82.7% of the total catches) and Glossina morsitans morsitans (17.3%) were the two tsetse species recorded in the north and northwest parts of the country. No fly was captured in the northeast. The distribution of AAT follows broadly that of tsetse, although sporadic AAT cases were also reported from the northeast, apparently because of transboundary animal movement. Three trypanosome species were reported, namely Trypanosoma brucei (61.7% of recorded infections), Trypanosoma congolense (28.1%) and Trypanosoma vivax (10.2%). The respective prevalences, as estimated in sentinel herds by random sampling, were 2.22, 0.43 and 0.30%, respectively. DISCUSSION: The patterns of tsetse and AAT distributions in Zimbabwe are shaped by a combination of bioclimatic factors, historical events such as the rinderpest epizootic at the turn of the twentieth century and extensive and sustained tsetse control that is aimed at progressively eliminating tsetse and trypanosomiasis from the entire country. The comprehensive dataset assembled in the atlas will improve the spatial targeting of surveillance and control activities. It will also represent a valuable tool for research, by enabling large-scale geo-spatial analyses.


Asunto(s)
Distribución Animal , Trypanosoma/fisiología , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse/parasitología , Animales , Atlas como Asunto , Bases de Datos Factuales , Insectos Vectores/parasitología , Ganado/parasitología , Trypanosoma/clasificación , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Zimbabwe/epidemiología
14.
Parasit Vectors ; 13(1): 286, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503681

RESUMEN

BACKGROUND: African animal trypanosomosis (AAT) is a major livestock disease in Kenya. Even though, over the years various organizations have collected a vast amount of field data on tsetse and AAT in different parts of the country, recent national-level maps are lacking. To address this gap, a national atlas of tsetse and AAT distribution is being developed by the Kenya Tsetse and Trypanosomosis Eradication Council (KENTTEC) and partners. METHODS: All data collected by KENTTEC from 2006 to 2019 were systematically assembled, georeferenced and harmonized. A comprehensive data repository and a spatially-explicit database were created. Input data were collected mainly in the context of control activities, and include both baseline surveys (i.e. pre-intervention) and the subsequent monitoring during and after interventions. Surveys were carried out in four regions (i.e. Western, Rift Valley, Central and Coast), and in 21 of the 47 counties in Kenya. Various devices were used for entomological data collection (i.e. biconical, NGU and H traps, and sticky panels), while the buffy-coat technique was the method used to detect AAT. RESULTS: Tsetse trapping was carried out in approximately 5000 locations, and flies (> 71,000) were caught in all four investigated regions. Six species of Glossina were detected: G. pallidipes (87% of the catches); G. brevipalpis (8%); G. fuscipes fuscipes (4%); G. longipennis (< 1%); G. austeni (< 1%); and G. swynnertoni (< 1%). A total of 49,785 animals (98% of which cattle) were tested for AAT in approximately 500 locations. Of these, 914 animals were found to be infected. AAT was confirmed in all study regions, in particular caused by Trypanosoma vivax (48% of infections) and T. congolense (42%). Fewer cases of T. brucei were found. CONCLUSIONS: The development and regular update of a comprehensive national database of tsetse and AAT is crucial to guide decision making for the progressive control of the disease. This first version of the atlas based on KENTTEC data has achieved a remarkable level of geographical coverage, but temporal and spatial gaps still exist. Other stakeholders at the national and international level will contribute to the initiative, thus improving the completeness of the atlas.


Asunto(s)
Distribución Animal , Bases de Datos Factuales , Control de Insectos , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse , Animales , Atlas como Asunto , Bovinos , Geografía , Insectos Vectores/parasitología , Kenia , Ganado/parasitología , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/clasificación , Moscas Tse-Tse/parasitología
15.
PLoS Negl Trop Dis ; 14(5): e0008261, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32437391

RESUMEN

BACKGROUND: In 2012 human African trypanosomiasis (HAT), also known as sleeping sickness, was targeted for elimination as a public health problem, set to be achieved by 2020. The World Health Organization (WHO) provides here the 2018 update on the progress made toward that objective. Global indicators are reviewed, in particular the number of reported cases and the areas at risk. Recently developed indicators for the validation of HAT elimination at the national level are also presented. METHODOLOGY/PRINCIPAL FINDINGS: With 977 cases reported in 2018, down from 2,164 in 2016, the main global indicator of elimination is already well within the 2020 target (i.e. 2,000 cases). Areas at moderate or higher risk (i.e. ≥ 1 case/10,000 people/year) are also steadily shrinking (less than 200,000 km2 in the period 2014-2018), thus nearing the 2020 target [i.e. 90% reduction (638,000 km2) from the 2000-2004 baseline (709,000 km2)]. Health facilities providing diagnosis and treatment of gambiense HAT continued to increase (+7% since the previous survey), with a better coverage of at-risk populations. By contrast, rhodesiense HAT health facilities decreased in number (-10.5%) and coverage. At the national level, eight countries meet the requirements to request validation of gambiense HAT elimination as a public health problem (i.e. Benin, Burkina Faso, Cameroon, Côte d'Ivoire, Ghana, Mali, Rwanda, and Togo), while for other endemic countries more efforts are needed in surveillance, control, or both. CONCLUSIONS/SIGNIFICANCE: The 2020 goal of HAT elimination as a public health problem is within grasp, and eligible countries are encouraged to request validation of their elimination status. Beyond 2020, the HAT community must gear up for the elimination of gambiense HAT transmission (2030 goal), by preparing for both the expected challenges (e.g. funding, coordination, integration of HAT control into regular health systems, development of more adapted tools, cryptic trypanosome reservoirs, etc.) and the unexpected ones.


Asunto(s)
Erradicación de la Enfermedad/estadística & datos numéricos , Transmisión de Enfermedad Infecciosa/prevención & control , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Salud Global , Humanos , Incidencia , Organización Mundial de la Salud
16.
Acta Trop ; 204: 105328, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31904345

RESUMEN

Tsetse-transmitted trypanosomosis remains a major animal health problem in Nigeria, in a context where changes in land cover, climate and control interventions are modifying its epidemiological patterns. Evidence-based decision making for the progressive control of the disease requires spatially-explicit information on its occurrence and prevalence, as well as on the distribution and abundance of the tsetse vector. In the framework of the continental Atlas of tsetse and African animal trypanosomosis (AAT), a geo-referenced database was assembled for Nigeria, based on the systematic review of 133 scientific publications (period January 1990 - March 2019). The three main species of trypanosomes responsible for the disease (i.e. Trypanosoma vivax, T. congolense and T. brucei) were found to be widespread, thus posing a national-level problem. Their geographic distribution extends beyond the tsetse-infested belt, owing to the combined effect of animal movement and mechanical transmission by non-tsetse vectors. T. simiae, the major trypanosomal pathogen in pigs, T. godfreyi and the human-infective T. brucei gambiense were also reported. AAT was reported in a number of susceptible host species, including cattle, sheep, goats, pigs, camels, horses, donkeys and dogs, while no study on wildlife was identified. Estimates of prevalence are heavily influenced by the sensitivity of the diagnostic techniques, ranging from an average of 3.5% for blood films to 31.0% for molecular techniques. Two riverine tsetse species (i.e. Glossina palpalis palpalis and G. tachinoides) were found to have the broadest geographical range, as they were detected in all six geopolitical zones of Nigeria. By contrast, the distribution of savannah species (i.e. G. morsitans submorsitans and G. longipalpis) appears to be highly fragmented, and limited to protected areas. Very little information is available for forest species, with one single paper reporting on G. fusca congolensis and G. nigrofusca nigrofusca in the Niger Delta region. The future development of a national Atlas of tsetse and AAT, relying on both published and unpublished information, could improve on the present review and provide further epidemiological evidence for decision making.


Asunto(s)
Animales Salvajes , Ganado , Trypanosoma/clasificación , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse/fisiología , Animales , Nigeria/epidemiología , Tripanosomiasis Africana/epidemiología
17.
Parasit Vectors ; 12(1): 466, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597558

RESUMEN

BACKGROUND: Tsetse-transmitted trypanosomosis is a deadly, neglected tropical disease and a major challenge for mixed crop-livestock agriculture in sub-Saharan Africa. It is caused by several species of the genus Trypanosoma. Information on the occurrence of tsetse flies and African animal trypanosomosis (AAT) is available for different areas of Mali. However, these data have never been harmonized and centralized, which prevents the development of comprehensive epidemiological maps and constrains an evidence-based planning of control actions. To address this challenge, we created a dynamic geo-spatial database of tsetse and AAT distribution in Mali. METHODS: A digital repository containing epidemiological data collected between 2000 and 2018 was assembled. In addition to scientific publications, the repository includes field datasheets, technical reports and other grey literature. The data were verified, harmonized, georeferenced and integrated into a single spatially-explicit database. RESULTS: For the tsetse component, approximately 19,000 trapping records, corresponding to 6000 distinct trapping locations and 38,000 flies were included in the database. Glossina palpalis gambiensis was the most widespread and abundant species, and it was found in the southern, southern-central and western parts of the country. Glossina tachinoides was only found in the South. Only a few specimens of Glossina morsitans submorsitans were detected. For the AAT component, approximately 1000 survey records were included, corresponding to 450 distinct survey sites and 37,000 tested bovines. AAT was found in all surveyed regions, although data for the tsetse-free North and North-East are lacking. Trypanosoma vivax and Trypanosoma congolense were the dominant species, while Trypanosoma brucei infections were much less numerous. CONCLUSIONS: The atlas of tsetse and AAT in Mali provides a synoptic view of the vector and disease situation at the national level. Still, major geographical gaps affect the North, the North-East and the West, and there is also a severe lack of data over the past five years. Trypanosomosis remains a major animal health problem in Mali. However, despite its prevalence and distribution, monitoring and control activities are presently very limited. Efforts should be made to strengthen the progressive control of AAT in Mali, and the atlas provides a new tool to identify priority areas for intervention.


Asunto(s)
Insectos Vectores/clasificación , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse/clasificación , Animales , Bovinos , Bases de Datos Factuales , Femenino , Insectos Vectores/parasitología , Masculino , Malí/epidemiología , Enfermedades Desatendidas/epidemiología , Enfermedades Desatendidas/parasitología , Enfermedades Desatendidas/veterinaria , Prevalencia , Trypanosoma brucei brucei/aislamiento & purificación , Trypanosoma brucei brucei/fisiología , Trypanosoma congolense/aislamiento & purificación , Trypanosoma congolense/fisiología , Trypanosoma vivax/aislamiento & purificación , Trypanosoma vivax/fisiología , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/transmisión , Tripanosomiasis Bovina/epidemiología , Tripanosomiasis Bovina/transmisión , Moscas Tse-Tse/parasitología
18.
PLoS Negl Trop Dis ; 12(12): e0006890, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30521525

RESUMEN

BACKGROUND: Human African trypanosomiasis (HAT) is a neglected tropical disease targeted for elimination 'as a public health problem' by 2020. The indicators to monitor progress towards the target are based on the number of reported cases, the related areas and populations exposed at various levels of risk, and the coverage of surveillance activities. Based on data provided by the National Sleeping Sickness Control Programmes (NSSCP), Non-Governmental Organizations (NGOs) and research institutions-and assembled in the Atlas of HAT-the World Health Organization (WHO) provides here an update to 2016 for these indicators, as well as an analysis of the epidemiological situation. RESULTS: Trends for the two primary indicators of elimination are on track for the 2020 goal: 2,164 cases of HAT were reported in 2016 (as compared to the milestone of 4,000 cases), and for the period 2012-2016 280,000 km2 are estimated to be at moderate risk or higher (i.e. ≥ 1 case/10,000 people/year), as compared to the milestone of 230,000 km2. These figures correspond to reductions of 92% and 61% as compared to the respective baselines (i.e. 26,550 HAT cases in the year 2000, and 709,000 km2 exposed at various levels of risk for the period 2000-2004). Among the secondary indicators, an overall improvement in the coverage of at risk populations by surveillance activities was observed. Regarding passive surveillance, the number of fixed health facilities providing gambiense HAT diagnosis or treatment expanded, with 1,338 enumerated in endemic countries in 2017 (+52% as compared to the survey completed only sixteen months earlier). Concerning rhodesiense HAT, 124 health facilities currently provide diagnosis or treatment. The broadening of passive surveillance is occurring in a context of fairly stable intensity of active case finding, with between 1.8 million and 2.4 million people screened per year over the period 2012-2016. DISCUSSION: Elimination of HAT as a public health problem by 2020 seems within reach, as the epidemiological trends observed in previous years are confirmed in this latest 2016 monitoring update. However, looking beyond 2020, and in particular to the 2030 goal of elimination of transmission as zero cases for the gambiense form of the disease only, there is no room for complacency. Challenges still abound, including ensuring the effective integration of HAT control activities in the health system, sustaining the commitment of donors and HAT endemic countries, and clarifying the extent of the threat posed by cryptic reservoirs (e.g. human asymptomatic carriers and the possible animal reservoirs in gambiense HAT epidemiology). WHO provides through the network for HAT elimination the essential coordination of the wide range of stakeholders to ensure synergy of efforts.


Asunto(s)
Erradicación de la Enfermedad , Enfermedades Desatendidas/epidemiología , Salud Pública , Tripanosomiasis Africana/epidemiología , África del Sur del Sahara/epidemiología , Instituciones de Salud , Humanos , Enfermedades Desatendidas/diagnóstico , Enfermedades Desatendidas/terapia , Medicina Tropical , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/terapia , Organización Mundial de la Salud
19.
BMC Vet Res ; 14(1): 361, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458767

RESUMEN

BACKGROUND: Diminazene diaceturate (DA) and isometamidium chloride hydrochloride (ISM) are with homidium bromide, the main molecules used to treat African Animal Trypanosomosis (AAT). These drugs can be purchased from official suppliers but also from unofficial sources like local food markets or street vendors. The sub-standard quality of some of these trypanocides is jeopardizing the efficacy of treatment of sick livestock, leading thus to economic losses for the low-resource farmers and is contributing to the emergence and spread of drug resistance. The objective of this study was to assess the quality of trypanocidal drugs sold in French speaking countries of West Africa. In total, 308 drug samples including 282 of DA and 26 of ISM were purchased from official and unofficial sources in Benin, Burkina Faso, Côte d'Ivoire, Mali, Niger and Togo. All samples were analysed at LACOMEV (Dakar, Senegal), a reference laboratory of the World Organisation for Animal Health, by galenic inspection and high performance liquid chromatography. RESULTS: The results showed that 51.90% of the samples were non-compliant compared to the standards and were containing lower quantity of the active ingredient compared to the indications on the packaging. The non-compliances ranged from 63.27% in Togo to 32.65% in Burkina Faso (61.82% in Benin, 53.84% in Mali, 50% in Côte d'Ivoire, 47.36% in Niger). The rates of non-compliance were not statistically different (P = 0.572) from official or unofficial suppliers and ranged from 30 to 75% and from 0 to 65% respectively. However, the non-compliance was significantly higher for ISM compared to DA (P = 0.028). CONCLUSIONS: The high non-compliance revealed in this study compromises the efficacy of therapeutic strategies against AAT, and is likely to exacerbate chemoresistance in West Africa. Corrective actions against sub-standard trypanocides urgently need to be taken by policy makers and control authorities.


Asunto(s)
Diminazeno/análogos & derivados , Fenantridinas/uso terapéutico , Tripanocidas/uso terapéutico , Tripanosomiasis Africana/veterinaria , África Occidental , Animales , Cromatografía Líquida de Alta Presión/veterinaria , Diminazeno/análisis , Diminazeno/normas , Diminazeno/uso terapéutico , Ganado/parasitología , Fenantridinas/análisis , Fenantridinas/normas , Control de Calidad , Tripanocidas/análisis , Tripanocidas/normas , Tripanosomiasis Africana/tratamiento farmacológico
20.
Trends Parasitol ; 34(3): 197-207, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29396200

RESUMEN

Trypanosoma brucei gambiense causes human African trypanosomiasis (HAT). Between 1990 and 2015, almost 440000 cases were reported. Large-scale screening of populations at risk, drug donations, and efforts by national and international stakeholders have brought the epidemic under control with <2200 cases in 2016. The World Health Organization (WHO) has set the goals of gambiense-HAT elimination as a public health problem for 2020, and of interruption of transmission to humans for 2030. Latent human infections and possible animal reservoirs may challenge these goals. It remains largely unknown whether, and to what extend, they have an impact on gambiense-HAT transmission. We argue that a better understanding of the contribution of human and putative animal reservoirs to gambiense-HAT epidemiology is mandatory to inform elimination strategies.


Asunto(s)
Erradicación de la Enfermedad , Reservorios de Enfermedades , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/transmisión , Animales , Humanos , Factores de Riesgo , Trypanosoma brucei gambiense/fisiología , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...