Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Antioxidants (Basel) ; 12(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37371872

RESUMEN

Triazole and imidazole fungicides are an emerging class of contaminants with an increasing and ubiquitous presence in the environment. In mammals, their reproductive toxicity has been reported. Concerning male reproduction, a combinatorial activity of tebuconazole (TEB; triazole fungicide) and econazole (ECO; imidazole compound) in inducing mitochondrial impairment, energy depletion, cell cycle arrest, and the sequential activation of autophagy and apoptosis in Sertoli TM4 cells (SCs) has recently been demonstrated. Given the strict relationship between mitochondrial activity and reactive oxygen species (ROS), and the causative role of oxidative stress (OS) in male reproductive dysfunction, the individual and combined potential of TEB and ECO in inducing redox status alterations and OS was investigated. Furthermore, considering the impact of cyclooxygenase (COX)-2 and tumor necrosis factor-alpha (TNF-α) in modulating male fertility, protein expression levels were assessed. In the present study, we demonstrate that azoles-induced cytotoxicity is associated with a significant increase in ROS production, a drastic reduction in superoxide dismutase (SOD) and GSH-S-transferase activity levels, and a marked increase in the levels of oxidized (GSSG) glutathione. Exposure to azoles also induced COX-2 expression and increased TNF-α production. Furthermore, pre-treatment with N-acetylcysteine (NAC) mitigates ROS accumulation, attenuates COX-2 expression and TNF-α production, and rescues SCs from azole-induced apoptosis, suggesting a ROS-dependent molecular mechanism underlying the azole-induced cytotoxicity.

2.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500603

RESUMEN

Salvianolic acid B (SalB) is a bioactive compound from Salviae miltiorrhizae, one of the most important traditional herbal medicines widely used in several countries for the treatment of cardiovascular diseases. The aim of this study was to evaluate the in vitro effect of SalB on the expression and the activity of matrix metalloproteinase 9 (MMP-9), a zinc-dependent proteolytic enzyme, in human MDA-MB-231 breast cancer cells. This cellular model is characterized by a marked invasive phenotype, supported by a high constitutive expression of MMPs, especially gelatinases. SalB was first of all evaluated by in silico approaches primarily aimed at predicting the main pharmacokinetic parameters. The most favorable interaction between the natural compound and MMP-9 was instead tested by molecular docking analysis that was subsequently verified by an enzymatic inhibition assay. MDA-MB-231 cells were treated with SalB 5 µM and 50 µM for 24 h and 48 h. The conditioned media obtained from treated cells were then analyzed by gelatin zymography and reverse zymography to, respectively, evaluate the MMP-9 activity and the presence of TIMP-1. The expression of the enzyme was then evaluated by Western blot on conditioned media and by analysis of transcripts through reverse transcriptase-polymerase chain reaction (RT-PCR). The in silico approach showed the ability of SalB to interact with the catalytic zinc ion of the enzyme, with a plausible competitive mode of action. The analysis of conditioned culture media showed a reduction in MMP-9 activity and the concomitant decrease in the enzyme concentration, partially confirmed by analysis of transcripts. SalB showed the ability to modulate the function of MMP-9 in MDA-MB-231 cells. To our knowledge, this is the first time in which the role of SalB on MMP-9 in a highly invasive cellular model is investigated. The obtained results impose further and more specific evaluations in order to obtain a better understanding of the biochemical mechanisms that regulate the interaction between this natural compound and the MMP-9.


Asunto(s)
Neoplasias de la Mama , Metaloproteinasa 9 de la Matriz , Humanos , Femenino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de la Mama/metabolismo , Invasividad Neoplásica , Simulación del Acoplamiento Molecular , Zinc
3.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430590

RESUMEN

Prostaglandin analogues (PGAs), including bimatoprost (BIM), are generally the first-line therapy for glaucoma due to their greater efficacy, safety, and convenience of use. Commercial solutions of preservative-free BIM (BIM 0.03% and 0.01%) are already available, although their topical application may result in ocular discomfort. This study aimed to evaluate the in vitro effects of preservative-free BIM 0.03% vs. 0.01% in the human conjunctival epithelial (HCE) cell line. Our results showed that long-term exposure to BIM 0.03% ensues a significant decrease in cell proliferation and viability. Furthermore, these events were associated with cell cycle arrest, apoptosis, and alterations of ΔΨm. BIM 0.01% does not exhibit cytotoxicity, and no negative influence on conjunctival cell growth and viability or mitochondrial activity has been observed. Short-time exposure also demonstrates the ability of BIM 0.03% to trigger reactive oxygen species (ROS) production and mitochondrial hyperpolarisation. An in silico drug network interaction was also performed to explore known and predicted interactions of BIM with proteins potentially involved in mitochondrial membrane potential dissipation. Our findings overall strongly reveal better cellular tolerability of BIM 0.01% vs. BIM 0.03% in HCE cells.


Asunto(s)
Conjuntiva , Conservadores Farmacéuticos , Humanos , Bimatoprost/farmacología , Conservadores Farmacéuticos/farmacología , Oxidación-Reducción
4.
Structure ; 30(11): 1479-1493.e9, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36240773

RESUMEN

Antimicrobial resistance threatens the eradication of infectious diseases and impairs the efficacy of available therapeutics. The bacterial SOS pathway is a conserved response triggered by genotoxic stresses and represents one of the principal mechanisms that lead to resistance. The RecA recombinase acts as a DNA-damage sensor inducing the autoproteolysis of the transcriptional repressor LexA, thereby derepressing SOS genes that mediate DNA repair, survival to chemotherapy, and hypermutation. The inhibition of such pathway represents a promising strategy for delaying the evolution of antimicrobial resistance. We report the identification, via llama immunization and phage display, of nanobodies that bind LexA with sub-micromolar affinity and block autoproteolysis, repressing SOS response in Escherichia coli. Biophysical characterization of nanobody-LexA complexes revealed that they act by trapping LexA in an inactive conformation and interfering with RecA engagement. Our studies pave the way to the development of new-generation antibiotic adjuvants for the treatment of bacterial infections.


Asunto(s)
Respuesta SOS en Genética , Anticuerpos de Dominio Único , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/farmacología
5.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35745633

RESUMEN

The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CLpro. The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the binding with the 3CLpro. The compounds are slow-binding inactivators of 3CLpro with a Ki of 3.95 µM and 3.77 µM for protocetraric and salazinic acid, respectively, and inhibitory efficiency kinact/Ki at about 3 × 10-5 s-1µM-1. The mechanism of inhibition shows that both compounds act as competitive inhibitors with the formation of a stable covalent adduct. The viability assay on epithelial cells revealed that none of them shows cytotoxicity up to 80 µM, which is well below the Ki values. By molecular modelling, we predicted that the catalytic Cys145 makes a nucleophilic attack on the carbonyl carbon of the cyclic ester common to both inhibitors, forming a stably acyl-enzyme complex. The computational and kinetic analyses confirm the formation of a stable acyl-enzyme complex with 3CLpro. The results obtained enrich the knowledge of the already numerous biological activities exhibited by lichen secondary metabolites, paving the way for developing promising scaffolds for the design of cysteine enzyme inhibitors.

6.
Antioxidants (Basel) ; 11(6)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35740096

RESUMEN

Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant "phase 2" enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson's disease and Alzheimer's disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.

7.
Antimicrob Agents Chemother ; 66(6): e0240221, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35647648

RESUMEN

KPC-53 enzyme is a natural KPC variant which showed a duplication of L167E168 residues in the Ω-loop structure. The blaKPC-53 gene was cloned both into pBC-SK and pET-24a vectors, and the recombinant plasmids were transferred by transformation in Escherichia coli competent cells to evaluate the antimicrobial susceptibility and to produce the enzyme. Compared to KPC-3, the KPC-53 was less stable and showed a dramatic reduction of kcat and kcat/Km versus several ß-lactams, in particular carbapenems. Indeed, a 2,000-fold reduction was observed in the kcat values of KPC-53 for imipenem and meropenem. Concerning inhibitors, KPC-53 was susceptible to tazobactam and clavulanic acid but maintained resistance to avibactam. The molecular modeling indicates that the L167E168 duplication in KPC-53 modifies the interactions between residues involved in the catalytic pocket, changing the flexibility of the Ω-loop, which is directly coupled with the catalytic properties of the KPC enzymes.


Asunto(s)
Aminoácidos , beta-Lactamasas , Antibacterianos/metabolismo , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Proteínas Bacterianas/metabolismo , Combinación de Medicamentos , Escherichia coli/metabolismo , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
8.
ACS Appl Nano Mater ; 5(5): 6140-6148, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35655931

RESUMEN

The efficacy of the treatment of bacterial infection is seriously reduced because of antibiotic resistance; thus, therapeutic solutions against drug-resistant microbes are necessary. Nanoparticle-based solutions are particularly promising for meeting this challenge because they can offer intrinsic antimicrobial activity and sustained drug release at the target site. Herein, we present a newly developed nanovesicle system of the quatsome family, composed of l-prolinol-derived surfactants and cholesterol, which has noticeable antibacterial activity even on Gram-negative strains, demonstrating great potential for the treatment of bacterial infections. We optimized the vesicle stability and antibacterial activity by tuning the surfactant chain length and headgroup charge (cationic or zwitterionic) and show that these quatsomes can furthermore serve as nanocarriers of pharmaceutical actives, demonstrated here by the encapsulation of (+)-usnic acid, a natural substance with many pharmacological properties.

9.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628239

RESUMEN

Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.


Asunto(s)
Cetoconazol , Miconazol , Animales , Apoptosis , Glutatión/metabolismo , Imidazoles/metabolismo , Imidazoles/farmacología , Cetoconazol/farmacología , Masculino , Mamíferos/metabolismo , Ratones , Miconazol/farmacología , Mitocondrias/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
11.
Mol Pharm ; 19(3): 788-797, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35170971

RESUMEN

Although liposomes are largely investigated as drug delivery systems, they can also exert a pharmacological activity if devoid of an active principle as a function of their composition. Specifically, charged liposomes can electrostatically interact with bacterial cells and, in some cases, induce bacterial cell death. Moreover, they also show a high affinity toward bacterial biofilms. We investigated the physicochemical and antimicrobial properties of liposomes formulated with a natural phospholipid and four synthetic l-prolinol-derived surfactants at 9/1 and 8/2 molar ratios. The synthetic components differ in the nature of the polar headgroup (quaternary ammonium salt or N-oxide) and/or the length of the alkyl chain (14 or 16 methylenes). These differences allowed us to investigate the effect of the molecular structure of liposome components on the properties of the aggregates and their ability to interact with bacterial cells. The antimicrobial properties of the different formulations were assessed against Gram-negative and Gram-positive bacteria and fungi. Drug-drug interactions with four classes of available clinical antibiotics were evaluated against Staphylococcus spp. The target of each class of antibiotics plays a pivotal role in exerting a synergistic effect. Our results highlight that the liposomal formulations with an N-oxide moiety are required for the antibacterial activity against Gram-positive bacteria. In particular, we observed a synergism between oxacillin and liposomes containing 20 molar percentage of N-oxide surfactants onStaphylococcus haemolyticus, Staphylococcus epidermidis, andStaphylococcus aureus. In the case of liposomes containing 20 molar percentage of the N-oxide surfactant with 14 carbon atoms in the alkyl chain for S. epidermidis, the minimum inhibitory concentration was 0.125 µg/mL, well below the breakpoint value of the antibiotic.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias Grampositivas , Liposomas/química , Pruebas de Sensibilidad Microbiana , Óxidos/farmacología , Staphylococcus epidermidis , Tensoactivos/química , Tensoactivos/farmacología
12.
Diagnostics (Basel) ; 13(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36611377

RESUMEN

INTRODUCTION: The Biolabo Solea 100 is a fully automated coagulation analyser using an optical system to detect coagulation designed to meet the needs of small- and medium-sized laboratories. This study aimed to evaluate the analytical performance in terms of bias, precision, and interference of the Biolabo Solea 100 coagulometer under routine laboratory conditions. In addition, a comparison was made with Stago STA-R MAX. MATERIALS AND METHODS: Imprecision and bias were evaluated for activated partial thromboplastin time (APTT), fibrinogen (FIB), and prothrombin time (PT) at the medical decision levels. The results of 200, 181, and 206 plasma samples for APTT, FIB, and PT, respectively, were compared with those obtained by Stago STA-R MAX. In addition, the interference level of bilirubin, haemoglobin, triglycerides, and fractionated heparin was evaluated. RESULTS: Repeatability, intermediate imprecision, bias, and total error are overall below the defined limits of acceptability. Of interest is the high degree of agreement between Solea 100 and STA-R MAX with respect to PT (s), which fits perfectly with the theoretical line of identity (y = 0 + 1.00x). No interferences were found within the limits stated by the manufacturer, with some exceptions for APTT with heparin and APTT and PT for higher bilirubin concentrations. CONCLUSIONS: In conclusion, the performance of the Solea 100 optical analyser is satisfactory and adequate for the determination of routine coagulation tests. Moreover, they are perfectly comparable to mechanical systems, such as STA-R MAX and other upper-level analysers, even considering the low interference levels under routine conditions.

13.
MethodsX ; 8: 101543, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754811

RESUMEN

To evaluate the effect of two combined antimicrobial drugs, one method currently in use is the checkerboard assay in a 96-well microplate, which gives a good in vivo estimation of the drug-drug combination effect. Appropriate and consolidated methods are described in numerous scientific publications which are, however, in turn, laborious and time-spending, specifically for the setting of the 96-well microplate preparation. Each drug of every combination must be prepared and dispensed individually in several steps, often limiting its use in terms of consumed materials and working time. In our method, the strengths of the previous consolidated techniques are kept, although the toughness and the execution time are drastically reduced. No special laboratory apparatuses are needed. All the procedures of our method can be referred to the CLSI or EUCAST guideline. The method provides few main steps, which can be summarised in:•Preparation of the microorganism inoculum and three concentrations of antimicrobial drugs.•Easy dispensing of all reagents into the microplates with a multichannel pipette.•Evaluation of the microorganism optical density (OD) by a microplate reader, and calculation of growth percentage for each of the 77 combinations.

14.
Antibiotics (Basel) ; 10(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34439002

RESUMEN

The dramatic intensification of antimicrobial resistance occurrence in pathogenic bacteria concerns the global community. The revitalisation of inactive antibiotics is, at present, the only way to go through this health system crisis and the use of antimicrobial adjuvants is turning out the most promising approach. Due to their low toxicity, eco-friendly characteristics and antimicrobial activity, amphoteric surfactants are good candidates. This study investigated the adjuvant potentialities of commercial acyclic and newly cyclic N-oxide surfactants combined with therapeutically available antibiotics against MDR methicillin-resistant Staphylococcus aureus (MRSA). The safety profile of the new cyclic compounds, compared to commercial surfactants, was preliminarily assessed, evaluating the cytotoxicity on human peripheral mononuclear blood cells and the haemolysis in human red blood cells. The compounds show an efficacious antimicrobial activity strongly related to the length of the carbon atom chain. In drug-drug interaction assays, all surfactants act synergistically, restoring sensitivity to oxacillin in MRSA, with dodecyl acyclic and cyclic derivatives being the most effective. After evaluating the cytotoxicity and considering the antimicrobial action, the most promising compound is the L-prolinol amine-oxide C12NOX. These findings suggest that the combination of antibiotics with amphoteric surfactants is a valuable therapeutic option for topical infections sustained by multidrug-resistant S. aureus.

15.
Clin Case Rep ; 9(6): e04238, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188925

RESUMEN

Although lymphopenia is currently considered a good predictor for the prognosis of COVID-19, it must be critically evaluated in patients with CLL, where other clinical markers should be considered to define the prognosis and treatment.

16.
Transl Vis Sci Technol ; 10(6): 8, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34111255

RESUMEN

Purpose: The study investigates the regulatory effects exhibited by lysate of Lactobacillus sakei pro-Bio65 (4%; L.SK) on the human conjunctival epithelial (HCE) cell line. Methods: Trypan blue and methylthiazol tetrazolium (MTT) methods were used to assess cell growth and viability. Mitochondrial membrane potential was assessed by JC-1 staining and cytofluorimetric detection methods. The antioxidant pattern and the intracellular reactive oxygen species (ROS) levels were analyzed by spectrophotometric and spectrofluorimetric methods. NF-κB luciferase activity was quantified by luminometric detection. NF-κB nuclear translocation, as well as mitochondrial morphology, were investigated by immunofluorescence using confocal microscopy. Cytokines and COX2 expression levels were determined by Western blot analyses. Results: This study demonstrates that L.SK exposure does not influence HCE cell proliferation and viability in vitro. L.SK paraprobiotic induces mild-low levels of intracellular ROS. It is coupled to changes in the mitochondrial membrane potential (ΔΨm), in a context of a regular mitochondrial-network organization. The negative modulation of tumor necrosis factor alpha (TNF-α) expression levels and rising antioxidant defense efficiency, mediated by the upregulation of glutathione (GSH) and increased antioxidant enzymatic activities, were observed. Conclusions: This study demonstrates that L.SK empowers the antioxidant endogenous efficiency of HCE cells, by the upregulation of the GSH content and the enzymatic antioxidant pattern, and concurrently reduces TNF-α protein expression. Translational Relevance: Although the obtained in vitro results should be confirmed by in vivo investigations, our data suggest the possibility of L.SK paraprobiotic application for promoting eye health, exploring its use as an endogen antioxidant system inducer in preventing and treating different oxidative stress-based, inflammatory, and age-related conditions.


Asunto(s)
Latilactobacillus sakei , Factor de Necrosis Tumoral alfa , Antioxidantes , Glutatión/metabolismo , Humanos , Latilactobacillus sakei/metabolismo , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Cells ; 11(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011593

RESUMEN

Mitochondria are multifunctional subcellular organelles essential for cellular energy homeostasis and apoptotic cell death. It is, therefore, crucial to maintain mitochondrial fitness. Mitophagy, the selective removal of dysfunctional mitochondria by autophagy, is critical for regulating mitochondrial quality control in many physiological processes, including cell development and differentiation. On the other hand, both impaired and excessive mitophagy are involved in the pathogenesis of different ageing-associated diseases such as neurodegeneration, cancer, myocardial injury, liver disease, sarcopenia and diabetes. The best-characterized mitophagy pathway is the PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway. However, other Parkin-independent pathways are also reported to mediate the tethering of mitochondria to the autophagy apparatuses, directly activating mitophagy (mitophagy receptors and other E3 ligases). In addition, the existence of molecular mechanisms other than PINK1-mediated phosphorylation for Parkin activation was proposed. The adenosine5'-monophosphate (AMP)-activated protein kinase (AMPK) is emerging as a key player in mitochondrial metabolism and mitophagy. Beyond its involvement in mitochondrial fission and autophagosomal engulfment, its interplay with the PINK1-Parkin pathway is also reported. Here, we review the recent advances in elucidating the canonical molecular mechanisms and signaling pathways that regulate mitophagy, focusing on the early role and spatial specificity of the AMPK/ULK1 axis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Mitofagia , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Modelos Biológicos , Fagosomas/metabolismo
18.
Life Sci ; 262: 118562, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038378

RESUMEN

Bacteria have a considerable ability and potential to acquire resistance against antimicrobial agents by acting diverse mechanisms such as target modification or overexpression, multidrug transporter systems, and acquisition of drug hydrolyzing enzymes. Studying the mechanisms of bacterial cell physiology is mandatory for the development of novel strategies to control the antimicrobial resistance phenomenon, as well as for the control of infections in clinics. The SOS response is a cellular DNA repair mechanism that has an essential role in the bacterial biologic process involved in resistance to antibiotics. The activation of the SOS network increases the resistance and tolerance of bacteria to stress and, as a consequence, to antimicrobial agents. Therefore, SOS can be an applicable target for the discovery of new antimicrobial drugs. In the present review, we focus on the central role of SOS response in bacterial resistance mechanisms and its potential as a new target for control of resistant pathogens.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Respuesta SOS en Genética/genética , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Reparación del ADN/genética , Farmacorresistencia Bacteriana/genética , Humanos
19.
Transl Vis Sci Technol ; 9(8): 4, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32855851

RESUMEN

Purpose: This study aims to investigate the antifungal activity and mechanism of action of ozonized oil eye drops in liposomes (Ozodrop), commercialized as eye lubricant for the treatment of dry eye syndrome and eye inflammation. The activity was tested against four clinical Candida species: Calbicans,Cglabrata,Ckrusei, and Corthopsilosis. Methods: The antifungal activity of the eye drop solution was ascertained by microdilution method in accordance with EUCAST obtaining the minimum inhibitory concentration for Ozodrop. The mechanism of action was further investigated in Calbicans by measuring cell vitality, intracellular reactive oxygen species production, levels of cellular and mitochondrial (∆Ψm) membrane potential, and the extent of membrane lipid peroxidation. Results: All Candida isolates were susceptible to Ozodrop with minimum inhibitory concentration values ranging from 0.195% (v/v) for Cglabrata to 6.25% (v/v) for Corthopsilosis. After 1 hour of exposure at the minimum inhibitory concentration value about 30% of cells were killed, reaching about 70% at the highest Ozodrop value. After Ozodrop exposure, Calbicans showed cell membrane depolarization, increased levels of lipid peroxidation, depolarized ∆Ψm, and increased reactive oxygen species generation. Conclusions: The significant increases in reactive oxygen species production cause the accumulation of reactive oxygen species-associated damages leading to progressive Candida cell dysfunction. Translational Relevance: The antifungal activity of Ozodrop was demonstrated at concentrations several times lower than the concentration that can be retrieved in ocular surface after its application. The antifungal activity of the eye drops Ozodrop would represent an interesting off-label indication for a product basically conceived as an eye lubricant.


Asunto(s)
Candida , Liposomas , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Soluciones Oftálmicas
20.
Chempluschem ; 85(5): 1014-1021, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32421257

RESUMEN

(+)-Usnic acid (UA) is a natural substance that displays pharmacological activity, but it is barely soluble in water, so it was included in liposomes in order to study its properties. First, the effects of phospholipid structure and loading methodology on UA entrapment efficacy were evaluated. Then, the physicochemical and biological properties (UA delivery efficacy to Staphylococcus aureus bacterial cells) of different liposome formulations containing structurally related amphiphiles derived from L-prolinol were fully investigated. Entrapment efficiency of UA with passive loading by incubation was 80-100 molar percentage, which is related to lipophilicity of the drug and to the packing and fluidity of the bilayer. Some of the investigated formulations show the potential of UA in delivery systems (minimum inhibitory concentration of liposomal UA: 8 µg/mL) and even subtle variations of the molecular structure of lipids can significantly affect the liposomes' physicochemical properties and efficiency of drug release.


Asunto(s)
Antiinfecciosos/química , Benzofuranos/química , Liposomas/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Benzofuranos/metabolismo , Benzofuranos/farmacología , Dimiristoilfosfatidilcolina/química , Liberación de Fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...