Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
ACS Infect Dis ; 10(4): 1174-1184, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472113

RESUMEN

The appearance and spread of mutations that cause drug resistance in rapidly evolving diseases, including infections by the SARS-CoV-2 virus, are major concerns for human health. Many drugs target enzymes, and resistance-conferring mutations impact inhibitor binding or enzyme activity. Nirmatrelvir, the most widely used inhibitor currently used to treat SARS-CoV-2 infections, targets the main protease (Mpro) preventing it from processing the viral polyprotein into active subunits. Our previous work systematically analyzed resistance mutations in Mpro that reduce binding to inhibitors; here, we investigate mutations that affect enzyme function. Hyperactive mutations that increase Mpro activity can contribute to drug resistance but have not been thoroughly studied. To explore how hyperactive mutations contribute to resistance, we comprehensively assessed how all possible individual mutations in Mpro affect enzyme function using a mutational scanning approach with a fluorescence resonance energy transfer (FRET)-based yeast readout. We identified hundreds of mutations that significantly increased the Mpro activity. Hyperactive mutations occurred both proximal and distal to the active site, consistent with protein stability and/or dynamics impacting activity. Hyperactive mutations were observed 3 times more than mutations which reduced apparent binding to nirmatrelvir in recent studies of laboratory-grown viruses selected for drug resistance. Hyperactive mutations were also about three times more prevalent than nirmatrelvir binding mutations in sequenced isolates from circulating SARS-CoV-2. Our findings indicate that hyperactive mutations are likely to contribute to the natural evolution of drug resistance in Mpro and provide a comprehensive list for future surveillance efforts.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutación , Lactamas , Leucina , Nitrilos , Saccharomyces cerevisiae , Resistencia a Medicamentos
2.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370706

RESUMEN

Over the last 5 years, cytosine base editors (CBEs) have emerged as a promising therapeutic tool for specific editing of single nucleotide variants and disrupting specific genes associated with disease. Despite this promise, the currently available CBE's have the significant liabilities of off-target and bystander editing activities, in part due to the mechanism by which they are delivered, causing limitations in their potential applications. In this study we engineeredhighly stabilized Cas-embedded CBEs (sCE_CBEs) that integrate several recent advances, andthat are highly expressible and soluble for direct delivery into cells as ribonucleoprotein (RNP) complexes. Our resulting sCE_CBE RNP complexes efficiently and specifically target TC dinucleotides with minimal off-target or bystander mutations. Additional uracil glycosylase inhibitor (UGI) protein in trans further increased C-to-T editing efficiency and target purity in a dose-dependent manner, minimizing indel formation to untreated levels. A single electroporation was sufficient to effectively edit the therapeutically relevant locus for sickle cell disease in hematopoietic stem and progenitor cells (HSPC) in a dose dependent manner without cellular toxicity. Significantly, these sCE_CBE RNPs permitted for the transplantation of edited HSPCs confirming highly efficient editing in engrafting hematopoietic stem cells in mice. The success of the designed sCBE editors, with improved solubility and enhanced on-target editing, demonstrates promising agents for cytosine base editing at other disease-related sites in HSPCs and other cell types.

3.
Sci Total Environ ; 918: 170598, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38340837

RESUMEN

Indoor air quality is crucial for human health due to the significant time people spend at home, and it is mainly affected by internal sources such as solid fuel combustion for heating. This study investigated the indoor air quality and health implications associated with residential coal burning covering gaseous pollutants (CO, CO2 and total volatile organic compounds), particulate matter, and toxicity. The PM10 chemical composition was obtained by ICP-MS/OES (elements), ion chromatography (water-soluble ions) and thermal-optical analysis (organic and elemental carbon). During coal combustion, PM10 levels were higher (up to 8.8 times) than background levels and the indoor-to-outdoor ratios were, on average, greater than unity, confirming the existence of a significant indoor source. The chemical characterisation of PM10 revealed increased concentrations of organic carbon and elemental carbon during coal combustion as well as arsenic, cadmium and lead. Carcinogenic risks associated with exposure to arsenic exceeded safety thresholds. Indoor air quality fluctuated during the study, with varying toxicity levels assessed using the Aliivibrio fischeri bioluminescence inhibition assay. These findings underscore the importance of mitigating indoor air pollution associated with coal burning and highlight the potential health risks from long-term exposure. Effective interventions are needed to improve indoor air quality and reduce health risks in coal-burning households.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Arsénico , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Arsénico/análisis , Carbono/análisis , Carbón Mineral/análisis , Monitoreo del Ambiente , Material Particulado/análisis
5.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37904991

RESUMEN

Prime editing efficiency is modest in cells that are quiescent or slowly proliferating where intracellular dNTP levels are tightly regulated. MMLV-reverse transcriptase - the prime editor polymerase subunit - requires high intracellular dNTPs levels for efficient polymerization. We report that prime editing efficiency in primary cells and in vivo is increased by mutations that enhance the enzymatic properties of MMLV-reverse transcriptase and can be further complemented by targeting SAMHD1 for degradation.

6.
Aging Cell ; 22(12): e13983, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858983

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.


Asunto(s)
Envejecimiento Prematuro , Progeria , Adolescente , Niño , Humanos , Ratones , Animales , Progeria/tratamiento farmacológico , Progeria/genética , Progeria/metabolismo , Envejecimiento Prematuro/tratamiento farmacológico , Envejecimiento Prematuro/genética , Ghrelina/farmacología , Calidad de Vida , Piel/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Envejecimiento
7.
PLoS One ; 18(7): e0289111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498869

RESUMEN

BACKGROUND: Atherosclerosis and consequent risk of cardiovascular events or mortality can be accurately assessed by quantifying coronary artery calcium score (CACS) derived from computed tomography. HMG-CoA-reductase inhibitors (statins) are the primary pharmacotherapy used to reduce cardiovascular events, yet there is growing data that support statin use may increase coronary calcification. We set out to determine the likelihood of severe CACS in the context of chronic statin therapy. METHODS: We established a retrospective, case-control study of 1,181 U.S. veterans without coronary artery disease (CAD) from a single site, the Providence VA Medical Center. Duration of statin therapy for primary prevention was divided into 5-year categorical increments. The primary outcome was CACS derived from low-dose lung cancer screening computed tomography (LCSCT), stratified by CACs severity (none = 0; mild = 1-99; moderate = 100-399; and severe ≥400 AU). Statin duration of zero served as the referent control. Ordinal logistic regression analysis determined the association between duration of statin use and CACS categories. Proportional odds assumption was tested using likelihood ratio test. Atherosclerotic cardiovascular disease (ASCVD) risk score, body mass index, and CKD (glomerular filtration rate of <60 ml/min/1.73 m2) were included in the adjustment models. RESULTS: The mean age of the study population was 64.7±7.2 years, and 706 (60%) patients were prescribed a statin at baseline. Duration of statin therapy was associated with greater odds of having increased CACS (>0-5 years, OR: 1.71 [CI: 1.34-2.18], p<0.001; >5-10 years, OR: 2.80 [CI: 2.01-3.90], p<0.001; >10 years, OR: 5.30 [CI: 3.23-8.70], p<0.001), and the relationship between statin duration and CACS remained significant after multivariate adjustment (>0-5 years, OR: 1.49 [CI: 1.16-1.92], p = 0.002; >5-10 years, OR: 2.38 [CI: 1.7-3.35], p<0.001; >10 years, OR: 4.48 [CI: 2.7-7.43], p<0.001). CONCLUSIONS: Long-term use of statins is associated with increased likelihood of severe CACS in patients with significant smoking history. The use of CACS to interpret cardiovascular event risk may require adjustment in the context of chronic statin therapy.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Pulmonares , Calcificación Vascular , Humanos , Persona de Mediana Edad , Anciano , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Estudios Retrospectivos , Estudios de Casos y Controles , Detección Precoz del Cáncer , Angiografía Coronaria/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Aterosclerosis/prevención & control , Factores de Riesgo , Calcificación Vascular/epidemiología , Medición de Riesgo
8.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425765

RESUMEN

Firefly luciferase is homologous to fatty acyl-CoA synthetases from insects that are not bioluminescent. Here, we determined the crystal structure of the fruit fly fatty acyl-CoA synthetase CG6178 to 2.5 Å. Based on this structure, we mutated a steric protrusion in the active site to create the artificial luciferase FruitFire, which prefers the synthetic luciferin CycLuc2 to d-luciferin by >1000-fold. FruitFire enabled in vivo bioluminescence imaging in the brains of mice using the pro-luciferin CycLuc2-amide. The conversion of a fruit fly enzyme into a luciferase capable of in vivo imaging underscores the potential for bioluminescence with a range of adenylating enzymes from nonluminescent organisms, and the possibilities for application-focused design of enzyme-substrate pairs.

9.
Sci Total Environ ; 900: 165860, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37516189

RESUMEN

This paper presents a source apportionment study performed on a dataset collected at a trafficked site in Coimbra (Portugal) during the period December 2018-June 2019. The novelty of this work consists in the methodological approach used and the sensitivity study carried out to give hints to potential future applications. Indeed, a multi-time resolution and multi-parameter study was performed joining together aerosol data from 24-h chemically characterized samples and high-time resolution multi-wavelength absorption coefficients retrieved by an Aethalometer. A detailed sensitivity study on the most suitable combination of time resolution and uncertainties was carried out to obtain reliable physical and stable solutions over all analyses. In parallel, a regular EPA-PMF source apportionment study using chemical and optical variables averaged on 24 h is presented and discussed in comparison to the more complex multi-time and multi-parameter approach. Apart from results pertaining to the identification and relevance of different sources in Coimbra, the methodological results shown here can give guidance for readers who want to implement optical variables jointly with chemical ones in the same model run.

10.
ACS Infect Dis ; 9(7): 1372-1386, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37390404

RESUMEN

Drugs that target the main protease (Mpro) of SARS-CoV-2 are effective therapeutics that have entered clinical use. Wide-scale use of these drugs will apply selection pressure for the evolution of resistance mutations. To understand resistance potential in Mpro, we performed comprehensive surveys of amino acid changes that can cause resistance to nirmatrelvir (Pfizer), and ensitrelvir (Xocova) in a yeast screen. We identified 142 resistance mutations for nirmatrelvir and 177 for ensitrelvir, many of which have not been previously reported. Ninety-nine mutations caused apparent resistance to both inhibitors, suggesting likelihood for the evolution of cross-resistance. The mutation with the strongest drug resistance score against nirmatrelvir in our study (E166V) was the most impactful resistance mutation recently reported in multiple viral passaging studies. Many mutations that exhibited inhibitor-specific resistance were consistent with the distinct interactions of each inhibitor in the substrate binding site. In addition, mutants with strong drug resistance scores tended to have reduced function. Our results indicate that strong pressure from nirmatrelvir or ensitrelvir will select for multiple distinct-resistant lineages that will include both primary resistance mutations that weaken interactions with drug while decreasing enzyme function and compensatory mutations that increase enzyme activity. The comprehensive identification of resistance mutations enables the design of inhibitors with reduced potential of developing resistance and aids in the surveillance of drug resistance in circulating viral populations.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Leucina , Lactamas , Nitrilos
11.
Toxics ; 11(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37368605

RESUMEN

People spend most of their time indoors, particularly in their houses where daily activities are carried out, enhancing particulate matter (PM) emissions with consequent adverse health impacts. This study intended to appraise the toxicological and mutagenic responses of particulate matter with a diameter less than 10 µm (PM10) released from cooking and ironing activities under different conditions. The cytotoxicity of the PM10 total organic extracts was tested in A549 cells using the WST-8 and the lactate dehydrogenase (LDH) assays, while the interference in cell cycle dynamics and reactive oxygen species (ROS) production was analysed by flow cytometry. The S. typhimurium TA98 and TA100 Ames tester strains with and without metabolic activation were employed to determine the mutagenic potential of the PM10-bound polycyclic aromatic hydrocarbons (PAHs). PM10 organic extracts decreased the metabolic activity of A549 cells; however, no effects in the LDH release were observed. An increase in ROS levels was registered only for cells treated with PM10 at IC20 from steam ironing, in low ventilation conditions, while cell cycle dynamics was only affected by exposure to PM10 at IC20 from frying horse mackerel and grilling boneless pork strips. No mutagenic effects were observed for all the PM10-bound PAHs samples.

12.
Proc Natl Acad Sci U S A ; 120(20): e2220551120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155839

RESUMEN

An emerging role for the circadian clock in autophagy and lysosome function has opened new avenues for exploration in the field of neurodegeneration. The daily rhythms of circadian clock proteins may coordinate gene expression programs involved not only in daily rhythms but in many cellular processes. In the brain, astrocytes are critical for sensing and responding to extracellular cues to support neurons. The core clock protein BMAL1 serves as the primary positive circadian transcriptional regulator and its depletion in astrocytes not only disrupts circadian function but also leads to a unique cell-autonomous activation phenotype. We report here that astrocyte-specific deletion of Bmal1 influences endolysosome function, autophagy, and protein degradation dynamics. In vitro, Bmal1-deficient astrocytes exhibit increased endocytosis, lysosome-dependent protein cleavage, and accumulation of LAMP1- and RAB7-positive organelles. In vivo, astrocyte-specific Bmal1 knockout (aKO) brains show accumulation of autophagosome-like structures within astrocytes by electron microscopy. Transcriptional analysis of isolated astrocytes from young and aged Bmal1 aKO mice indicates broad dysregulation of pathways involved in lysosome function which occur independently of TFEB activation. Since a clear link has been established between neurodegeneration and endolysosome dysfunction over the course of aging, this work implicates BMAL1 as a key regulator of these crucial astrocyte functions in health and disease.


Asunto(s)
Relojes Circadianos , Animales , Ratones , Factores de Transcripción ARNTL/metabolismo , Astrocitos/metabolismo , Autofagia , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Lisosomas/metabolismo
13.
Sci Rep ; 13(1): 8538, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237175

RESUMEN

Agroforestry systems can potentially increase tree diversity within agricultural landscapes, but to date, there is little understanding of the patterns of shade plant diversity within different agroforestry systems (AFS) at large spatial scales. Using compiled plant inventory data (from 23 sources, 2517 plots, and 148,255 individuals) encompassing four AFS (shaded coffee; shaded cocoa; dispersed trees on pastures; and live fences) across six countries in Central America we estimated different metrics of diversity to assess the conservation value of different AFS for shade plants. 458 shade plant species were recorded across the four agroforestry systems. Primary forest species accounted for 28% of the shade species recorded, but only 6% of the recorded individuals. No single AFS was consistently the most diverse across countries when considering rarefied species richness. Trees on pastures can potentially reach a similar species richness as cocoa and coffee systems but require sampled areas 7-30 times larger. In terms of composition, 29 species were shared across the agroforestry systems in different countries, illustrating the strong selection pressure of farmers for species that provide timber, firewood, and fruit. Our study highlights the potential contribution and limitations of different AFS for tree diversity conservation within agricultural landscapes.


Asunto(s)
Cacao , Café , Humanos , Biodiversidad , Árboles , Plantas , América Central , Conservación de los Recursos Naturales
14.
Eur J Med Chem ; 257: 115501, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37244161

RESUMEN

Protease inhibitors are the most potent antivirals against HIV-1, but they still lose efficacy against resistant variants. Improving the resistance profile is key to developing more robust inhibitors, which may be promising candidates for simplified next-generation antiretroviral therapies. In this study, we explored analogs of darunavir with a P1 phosphonate modification in combination with increasing size of the P1' hydrophobic group and various P2' moieties to improve potency against resistant variants. The phosphonate moiety substantially improved potency against highly mutated and resistant HIV-1 protease variants, but only when combined with more hydrophobic moieties at the P1' and P2' positions. Phosphonate analogs with a larger hydrophobic P1' moiety maintained excellent antiviral potency against a panel of highly resistant HIV-1 variants, with significantly improved resistance profiles. The cocrystal structures indicate that the phosphonate moiety makes extensive hydrophobic interactions with the protease, especially with the flap residues. Many residues involved in these protease-inhibitor interactions are conserved, enabling the inhibitors to maintain potency against highly resistant variants. These results highlight the need to balance inhibitor physicochemical properties by simultaneous modification of chemical groups to further improve resistance profiles.


Asunto(s)
Inhibidores de la Proteasa del VIH , VIH-1 , Inhibidores de la Proteasa del VIH/farmacología , Inhibidores de la Proteasa del VIH/química , Darunavir/farmacología , Péptido Hidrolasas , Proteasa del VIH/genética , Cristalografía por Rayos X
15.
Adv Med Educ Pract ; 14: 373-380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101695

RESUMEN

Objective: This study compared knowledge attainment and student enjoyment and engagement between clinical case vignette, patient-testimony videos and mixed reality (MR) teaching via the Microsoft HoloLens 2, all delivered remotely to third year medical students. The feasibility of conducting MR teaching on a large scale was also assessed. Setting & Participants: Medical students in Year 3 at Imperial College London participated in three online teaching sessions, one in each format. All students were expected to attend these scheduled teaching sessions and to complete the formative assessment. Inclusion of their data used as part of the research trial was optional. Primary and Secondary Outcome Measures: The primary outcome measure was performance on a formative assessment, which served to compare knowledge attainment between three forms of online learning. Moreover, we aimed to explore student engagement with each form of learning via a questionnaire, and also feasibility of applying MR as a teaching tool on a large scale. Comparisons between performances on the formative assessment between the three groups were investigated using a repeated measures two-way ANOVA. Engagement and enjoyment were also analysed in the same manner. Results: A total of 252 students participated in the study. Knowledge attainment of students using MR was comparable with the other two methods. Participants reported higher enjoyment and engagement (p<0.001) for the case vignette method, compared with MR and video-based teaching. There was no difference in enjoyment or engagement ratings between MR and the video-based methods. Conclusion: This study demonstrated that the implementation of MR is an effective, acceptable, and feasible way of teaching clinical medicine to undergraduate students on a large scale. However, case-based tutorials were found to be favoured most by students. Future work could further explore the best uses for MR teaching within the medical curriculum.

16.
Adv Health Sci Educ Theory Pract ; 28(4): 1171-1189, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36859731

RESUMEN

Previous literature has explored unconscious racial biases in clinical education and medicine, finding that people with darker skin tones can be underrepresented in learning resources and managed differently in a clinical setting. This study aimed to examine whether patient skin colour can affect the diagnostic ability and confidence of medical students, and their cognitive reasoning processes. We presented students with 12 different clinical presentations on both white skin (WS) and non-white skin (NWS). A think aloud (TA) study was conducted to explore students' cognitive reasoning processes (n = 8). An online quiz was also conducted where students submitted a diagnosis and confidence level for each clinical presentation (n = 185). In the TA interviews, students used similar levels of information gathering and analytical reasoning for each skin type but appeared to display increased uncertainty and reduced non-analytical reasoning methods for the NWS images compared to the WS images. In the online quiz, students were significantly more likely to accurately diagnose five of the 12 clinical presentations (shingles, cellulitis, Lyme disease, eczema and meningococcal disease) on WS compared to NWS (p < 0.01). With regards to students' confidence, they were significantly more confident diagnosing eight of the 12 clinical presentations (shingles, cellulitis, Lyme disease, eczema, meningococcal disease, urticaria, chickenpox and Kawasaki disease) on WS when compared to NWS (p < 0.01). These findings highlight the need to improve teaching resources to include a greater diversity of skin colours exhibiting clinical signs, to improve students' knowledge and confidence, and ultimately, to avoid patients being misdiagnosed due to the colour of their skin.


Asunto(s)
Eccema , Herpes Zóster , Enfermedad de Lyme , Infecciones Meningocócicas , Estudiantes de Medicina , Humanos , Pigmentación de la Piel , Estudiantes de Medicina/psicología , Celulitis (Flemón) , Competencia Clínica
17.
Viruses ; 15(3)2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36992489

RESUMEN

With the spread of SARS-CoV-2 throughout the globe causing the COVID-19 pandemic, the threat of zoonotic transmissions of coronaviruses (CoV) has become even more evident. As human infections have been caused by alpha- and beta-CoVs, structural characterization and inhibitor design mostly focused on these two genera. However, viruses from the delta and gamma genera also infect mammals and pose a potential zoonotic transmission threat. Here, we determined the inhibitor-bound crystal structures of the main protease (Mpro) from the delta-CoV porcine HKU15 and gamma-CoV SW1 from the beluga whale. A comparison with the apo structure of SW1 Mpro, which is also presented here, enabled the identification of structural arrangements upon inhibitor binding at the active site. The cocrystal structures reveal binding modes and interactions of two covalent inhibitors, PF-00835231 (active form of lufotrelvir) bound to HKU15, and GC376 bound to SW1 Mpro. These structures may be leveraged to target diverse coronaviruses and toward the structure-based design of pan-CoV inhibitors.


Asunto(s)
COVID-19 , Animales , Humanos , Porcinos , SARS-CoV-2/metabolismo , Pandemias , Antivirales/farmacología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Mamíferos
18.
Elife ; 122023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920025

RESUMEN

Darunavir (DRV) is exceptional among potent HIV-1 protease inhibitors (PIs) in high drug concentrations that are achieved in vivo. Little is known about the de novo resistance pathway for DRV. We selected for resistance to high drug concentrations against 10 PIs and their structural precursor DRV. Mutations accumulated through two pathways (anchored by protease mutations I50V or I84V). Small changes in the inhibitor P1'-equivalent position led to preferential use of one pathway over the other. Changes in the inhibitor P2'-equivalent position determined differences in potency that were retained in the resistant viruses and that impacted the selected mutations. Viral variants from the two pathways showed differential selection of compensatory mutations in Gag cleavage sites. These results reveal the high level of selective pressure that is attainable with fifth-generation PIs and how features of the inhibitor affect both the resistance pathway and the residual potency in the face of resistance.


Asunto(s)
Infecciones por VIH , Inhibidores de la Proteasa del VIH , VIH-1 , Humanos , Inhibidores de la Proteasa del VIH/química , VIH-1/genética , Darunavir/farmacología , Darunavir/uso terapéutico , Mutación , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico
19.
Sci Data ; 10(1): 138, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922563

RESUMEN

The frontal position of an ice shelf is an important parameter for ice dynamic modelling, the computation of mass fluxes, mapping glacier area change, calculating iceberg production rates and the estimation of ice discharge to the ocean. Until now, continuous and up-to-date information on Antarctic calving front locations is scarce due to the time-consuming manual delineation of fronts and the previously limited amount of suitable earth observation data. Here, we present IceLines, a novel data set on Antarctic ice shelf front positions to assess calving front change at an unprecedented temporal and spatial resolution. More than 19,400 calving front positions were automatically extracted creating dense inter- and intra-annual time series of calving front change for the era of Sentinel-1 (2014-today). The calving front time series can be accessed via the EOC GeoService hosted by DLR and is updated on a monthly basis. For the first time, the presented IceLines data set provides the possibility to easily include calving front dynamics in scientific studies and modelling to improve our understanding about ice sheet dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...