Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 19560, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379967

RESUMEN

Candida albicans (C. albicans) is an opportunistic pathogen, which causes superficial infection and can lead to mortal systemic infections, especially in immunocompromised patients. The incidence of C. albicans infections is increasing and there are a limited number of antifungal drugs used in treatment. Therefore, there is an urgent need for new and alternative antifungal drugs. Pomegranate rind extract (PRE) is known for its broad-spectrum antimicrobial activities, including against C. albicans and recently, PRE and Zn (II) have been shown to induce synergistic antimicrobial activity against various microbes. In this study, the inhibitory activities of PRE, Zn (II) and PRE in combination with Zn (II) were evaluated against C. albicans. Antifungal activities of PRE and Zn (II) were evaluated using conventional microdilution methods and the interaction between these compounds was assessed by in vitro checkerboard and time kill assays in planktonic cultures. The anti-biofilm activities of PRE, Zn (II) and PRE in combination with Zn (II) were assessed using confocal laser scanning microscopy, with quantitative analysis of biofilm biomass and mean thickness analysed using COMSTAT2 analysis. In addition, antimicrobial interactions between PRE and Zn (II) were assayed in terms reactive oxygen species (ROS) production by C. albicans. PRE and Zn (II) showed a potent antifungal activity against C. albicans, with MIC values of 4 mg/mL and 1.8 mg/mL, respectively. PRE and Zn (II) in combination exerted a synergistic antifungal effect, as confirmed by the checkerboard and time kill assays. PRE, Zn (II) and PRE and Zn (II) in combination gave rise to significant reductions in biofilm biomass, although only PRE caused a significant reduction in mean biofilm thickness. The PRE and Zn (II) in combination caused the highest levels of ROS production by C. albicans, in both planktonic and biofilm forms. The induction of excess ROS accumulation in C. albicans may help explain the synergistic activity of PRE and Zn (II) in combination against C. albicans in both planktonic and biofilm forms. Moreover, the data support the potential of the PRE and Zn (II) combination as a novel potential anti-Candida therapeutic system.


Asunto(s)
Candida albicans , Granada (Fruta) , Humanos , Antifúngicos/farmacología , Plancton , Especies Reactivas de Oxígeno/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas , Extractos Vegetales/farmacología , Zinc/farmacología
2.
Pharmaceutics ; 14(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36015257

RESUMEN

Fungal keratitis, a disease in which the cornea becomes inflamed due to an invasive fungal infection, remains difficult to treat due in part to limited choices of available treatments. Topical eye drops are first-line treatment, but can be ineffective as low levels of drug reach the target site due to precorneal losses and the impenetrability of the cornea. The aim of this study was to determine the corneal delivery of econazole using a novel topical enhancement approach using a composite delivery system based upon cyclodextrins and soft hydrogel contact lenses. Excess econazole nitrate was added to hydroxypropyl-α-cyclodextrin (HP-α-CD) and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) solutions, and the solubility determined using HPLC. Proprietary soft hydrogel contact lenses were then impregnated with saturated solutions and applied to freshly enucleated porcine eyeballs. Econazole nitrate 'eye drops' at the same concentrations served as the control. After 6 h, the corneas were excised and drug-extracted, prior to quantification using HPLC. Molecular dynamic simulations were performed to examine econazole−HP-ß-CD inclusion complexation and dissociation. The minimum inhibitory concentration (MIC) of econazole was determined against four fungal species associated with keratitis, and these data were then related to the amount of drug delivered to the cornea, using an average corneal volume of 0.19 mL. The solubility of econazole increased greatly in the presence of HP-ß-CD and more so with HP-α-CD (p < 0.001), with ratios >> 2. Hydrogel contact lenses delivered ×2.8 more drug across the corneas in comparison to eye drops alone, and ×5 more drug delivered to the cornea when cyclodextrin was present. Molecular graphics demonstrated dynamic econazole release, which would create transient enhanced drug concentration at the cornea surface. The solution-only drops achieved the least satisfactory result, producing sub-MIC levels with factors of ×0.81 for both Fusarium semitectum and Fusarium solani and ×0.40 for both Scolecobasidium tshawytschae and Bipolaris hawaiiensis. All other treatments delivered econazole at > MIC for all four fungal species. The efficacies of the delivery platforms evaluated were ranked: HP-α-CD contact lens > HP-ß-CD contact lens > contact lens = HP-α-CD drops > HP-ß-CD drops > solution-only drops. In summary, the results in this study have demonstrated that a composite drug delivery system based upon econazole−HP-ß-CD inclusion complexes loaded into contact lenses can achieve significantly greater corneal drug delivery with the potential for improved clinical responses.

3.
Biomolecules ; 11(12)2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34944534

RESUMEN

There is a need for new antimicrobial systems due to increased global resistance to current antimicrobials. Pomegranate rind extract (PRE) and Zn (II) ions both possess a level of antimicrobial activity and work has previously shown that PRE/Zn (II) in combination possesses synergistic activity against Herpes simplex virus and Micrococcus luteus. Here, we determined whether such synergistic activity extended to other, more pathogenic, bacteria. Reference strains of methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were cultured and subjected to challenge by PRE, Zn (II), or PRE + Zn (II), in time-kill assays. Data were obtained independently by two researchers using different PRE preparations. Statistically significant synergistic activity for PRE + Zn (II) was shown for all four bacterial strains tested compared to untreated controls, although the extent of efficacy and timescales varied. Zn (II) exerted activity and at 1 h, it was not possible to distinguish with PRE + Zn (II) combination treatment in all cases. PRE alone showed low activity against all four bacteria. Reproducible synergistic bactericidal activity involving PRE and Zn (II) has been confirmed. Potential mechanisms are discussed. The development of a therapeutic system that possesses demonstrable antimicrobial activity is supported which lends itself particularly to topical delivery applications, for example MRSA infections.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Extractos Vegetales/farmacología , Granada (Fruta)/química , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus epidermidis/crecimiento & desarrollo , Zinc/farmacología , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Extractos Vegetales/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
4.
Pharmaceutics ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201223

RESUMEN

Infectious diseases caused by microbial biofilms are a major clinical problem, and new antimicrobial agents that can inhibit biofilm formation and eradicate pre-formed biofilms are urgently needed. Pomegranate extracts are a well-established folkloric medicine and have been used in the treatment of infectious diseases since ancient times, whilst the addition of metal ions, including zinc (II), has enhanced the antimicrobial activity of pomegranate. Micrococcus luteus is generally a non-pathogenic skin commensal bacterium, although it can act as an opportunistic pathogen and cause serious infections, particularly involving catheterization and comorbidities. The aims of this study were to evaluate the holistic activity of pomegranate rind extract (PRE), Zn (II), and PRE/Zn (II) individually and in combination against M. luteus under both planktonic and biofilm conditions. Antimicrobial activity was detected in vitro using the broth dilution method, and synergistic activity was determined using checkerboard and time-kill assays. Effects on biofilm formation and eradication were determined by crystal violet and BacLightTM Live/Dead staining. PRE and Zn (II) exerted antimicrobial activity against M. luteus under both planktonic and biofilm conditions. After 4 h, potent synergistic bactericidal activity was also found when PRE and Zn (II) were co-administered under planktonic conditions (log reductions: PRE 1.83 ± 0.24, Zn (II) 3.4 ± 0.08, and PRE/Zn (II) 6.88 ± 1.02; p < 0.0001). In addition, greater heterogeneity was induced in the structure of M. luteus biofilm using the PRE/Zn (II) combination compared to when PRE and Zn (II) were applied individually. The activity of PRE and the PRE/Zn (II) combination could offer a novel antimicrobial therapy for the treatment of disease-associated infections caused by M. luteus and potentially other bacteria.

5.
Biomolecules ; 10(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854243

RESUMEN

Pomegranate (Punica granatum) is a well-established folklore medicine, demonstrating benefits in treating numerous conditions partly due to its antimicrobial and anti-inflammatory properties. Such desirable medicinal capabilities are attributed to a high hydrolysable tannin content, especially punicalagin. However, few studies have evaluated the abilities of pomegranate to promote oral healing, during situations such as periodontal disease or trauma. Therefore, this study evaluated the antioxidant and in vitro gingival wound healing effects of pomegranate rind extract (PRE) and punicalagin, alone and in combination with Zn (II). In vitro antioxidant activities were studied using DPPH and ABTS assays, with total PRE phenolic content measured by Folin-Ciocalteu assay. PRE, punicalagin and Zn (II) combination effects on human gingival fibroblast viability/proliferation and migration were investigated by MTT assay and scratch wounds, respectively. Punicalagin demonstrated superior antioxidant capacities to PRE, although Zn (II) exerted no additional influences. PRE, punicalagin and Zn (II) reduced gingival fibroblast viability and migration at high concentrations, but retained viability at lower concentrations without Zn (II). Fibroblast speed and distance travelled during migration were also enhanced by punicalagin with Zn (II) at low concentrations. Therefore, punicalagin in combination with Zn (II) may promote certain anti-inflammatory and fibroblast responses to aid oral healing.


Asunto(s)
Encía/efectos de los fármacos , Taninos Hidrolizables/administración & dosificación , Extractos Vegetales/administración & dosificación , Granada (Fruta) , Cicatrización de Heridas/efectos de los fármacos , Zinc/administración & dosificación , Antioxidantes/administración & dosificación , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Encía/citología , Encía/fisiología , Humanos , Técnicas In Vitro , Boca/citología , Boca/efectos de los fármacos , Boca/lesiones , Fenoles/administración & dosificación , Fenoles/análisis , Extractos Vegetales/química , Granada (Fruta)/química , Cicatrización de Heridas/fisiología
6.
Eur J Pharm Biopharm ; 149: 85-94, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32001314

RESUMEN

Alveolar osteitis is a complication that can occur after tooth extraction, whereby exposed bone results in severe throbbing pain for the patient and can be prone to infection. The current treatment options are widely regarded as sub-optimal. The aim of this project was to investigate in vitro the plausibility of a dual-action monolithic drug-loaded thermosensitive hydrogel that undergoes thermal gelation within the tooth socket and releases both anaesthetic and antimicrobial agents. Hydrogels containing different levels of lidocaine HCl and metronidazole were prepared based upon Carbopol 934P NF and Pluronic F-127 blends. Membrane-less drug release was determined from the set hydrogels into phosphate buffered saline (PBS) at 37 °C as a function of time, following analysis by HPLC. Gelation characteristics and hydrogel dissolution characteristics were also determined. At 23.38% Pluronic F-127, sol-gel transition commenced at 23 °C and gelation was completely at 37 °C (physiological temperature). Setting times varied with Pluronic content and there was an inverse relationship between drug release and Pluronic content. Sustained and dose dependent release of both drugs was observed at therapeutically relevant levels over 24 h, via a combination of diffusion, dissolution and surface erosion processes. Based on the amounts of drugs released, it was determined that hydrogels containing up to 0.5% lidocaine and 0.1% metronidazole exhibited low risk of cytotoxicity to primary human gingival fibroblasts. In an in vivo scenario, the sol-phase formulation would make contact with all inner surfaces of a tooth socket prior to transitioning to monolithic gel-phase and provide sustained release of lidocaine and metronidazole at sub-toxic levels, thereby providing simultaneous pain relief, protection from ingress of debris and pathological bacteria.


Asunto(s)
Sistemas de Liberación de Medicamentos , Alveolo Seco/tratamiento farmacológico , Lidocaína/administración & dosificación , Metronidazol/administración & dosificación , Acrilatos/química , Anestésicos Locales/administración & dosificación , Anestésicos Locales/farmacología , Anestésicos Locales/toxicidad , Antiinfecciosos/administración & dosificación , Antiinfecciosos/farmacología , Antiinfecciosos/toxicidad , Células Cultivadas , Liberación de Fármacos , Fibroblastos/efectos de los fármacos , Encía/citología , Encía/efectos de los fármacos , Humanos , Hidrogeles , Lidocaína/farmacología , Lidocaína/toxicidad , Metronidazol/farmacología , Metronidazol/toxicidad , Transición de Fase , Poloxámero/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...