Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 13(2): 117-121, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29203913

RESUMEN

Although molecular rectifiers were proposed over four decades ago 1,2 , until recently reported rectification ratios (RR) were rather moderate 2-11 (RR ~ 101). This ceiling was convincingly broken using a eutectic GaIn top contact 12 to probe molecular monolayers of coupled ferrocene groups (RR ~ 105), as well as using scanning tunnelling microscopy-break junctions 13-16 and mechanically controlled break junctions 17 to probe single molecules (RR ~ 102-103). Here, we demonstrate a device based on a molecular monolayer in which the RR can be switched by more than three orders of magnitude (between RR ~ 100 and RR ≥ 103) in response to humidity. As the relative humidity is toggled between 5% and 60%, the current-voltage (I-V) characteristics of a monolayer of di-nuclear Ru-complex molecules reversibly change from symmetric to strongly asymmetric (diode-like). Key to this behaviour is the presence of two localized molecular orbitals in series, which are nearly degenerate in dry circumstances but become misaligned under high humidity conditions, due to the displacement of counter ions (PF6-). This asymmetric gating of the two relevant localized molecular orbital levels results in humidity-controlled diode-like behaviour.

2.
Nano Lett ; 16(8): 4733-7, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27088578

RESUMEN

We investigate transport through mechanically triggered single-molecule switches that are based on the coordination sphere-dependent spin state of Fe(II)-species. In these molecules, in certain junction configurations the relative arrangement of two terpyridine ligands within homoleptic Fe(II)-complexes can be mechanically controlled. Mechanical pulling may thus distort the Fe(II) coordination sphere and eventually modify their spin state. Using the movable nanoelectrodes in a mechanically controlled break-junction at low temperature, current-voltage measurements at cryogenic temperatures support the hypothesized switching mechanism based on the spin-crossover behavior. A large fraction of molecular junctions formed with the spin-crossover-active Fe(II)-complex displays a conductance increase for increasing electrode separation and this increase can reach 1-2 orders of magnitude. Theoretical calculations predict a stretching-induced spin transition in the Fe(II)-complex and a larger transmission for the high-spin configuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...