Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 42: 189-204, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513413

RESUMEN

INTRODUCTION: Specific microbial communities are associated to host plants, influencing their phenotype and fitness.Despite the rising interest in plant microbiome, the role of microbial communities associated with perennial fruit plants remains overlooked. OBJECTIVES: This work provides the first comprehensive descriptionof the taxonomical and functional bacterial and fungal microbiota of below- and above-ground organsof three commercially important strawberry genotypes under cultural conditions. METHODS: Strawberry-associatedfungal and bacterial microbiomes were characterised by Next-Generation Sequencing and the potential functions expressed by the bacterial microbiome were analysed by both in silico and in vitro characterisation of plant growth-promoting abilities of native bacteria. Additionally, the association between the strawberry microbiome, plant disease tolerance, plant mineral nutrient content, and fruit quality was investigated. RESULTS: Results showed that thestrawberry core microbiome included 24 bacteria and 15 fungal operational taxonomicunits (OTUs).However, plant organ and genotype had a significant role in determining the taxonomical and functional composition of microbial communities. Interestingly, the cultivar with the highesttolerance against powdery mildew and leaf spot and the highest fruit productivity was the only one able to ubiquitously recruit the beneficial bacterium, Pseudomonasfluorescens, and to establish a mutualistic symbiosis with the arbuscular mycorrhizaRhizophagus irregularis. CONCLUSION: This work sheds light on the interaction of cultivated strawberry genotypes with a variety of microbes and highlights the importance of their applications to increase the sustainability of fruit crop production.


Asunto(s)
Fragaria , Microbiota , Fragaria/microbiología , Bacterias/genética , Genotipo , Simbiosis
2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361938

RESUMEN

Light composition modulates plant growth and defenses, thus influencing plant-pathogen interactions. We investigated the effects of different light-emitting diode (LED) red (R) (665 nm) and blue (B) (470 nm) light combinations on Actinidia chinensis performance by evaluating biometric parameters, chlorophyll a fluorescence, gas exchange and photosynthesis-related gene expression. Moreover, the influence of light on the infection by Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of bacterial canker of kiwifruit, was investigated. Our study shows that 50%R-50%B (50R) and 25%R-75%B (25R) lead to the highest PSII efficiency and photosynthetic rate, but are the least effective in controlling the endophytic colonization of the host by Psa. Monochromatic red light severely reduced ΦPSII, ETR, Pn, TSS and photosynthesis-related genes expression, and both monochromatic lights lead to a reduction of DW and pigments content. Monochromatic blue light was the only treatment significantly reducing disease symptoms but did not reduce bacterial endophytic population. Our results suggest that monochromatic blue light reduces infection primarily by modulating Psa virulence more than host plant defenses.


Asunto(s)
Actinidia , Pseudomonas syringae , Actinidia/genética , Clorofila A , Enfermedades de las Plantas/microbiología , Virulencia
3.
Microbiol Res ; 260: 127048, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35525168

RESUMEN

Plant-associated bacteria, including pathogens, recognise host-derived signals to activate specific responses. The genome of Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of bacterial canker of kiwifruit, encodes for three putative LuxR-like receptors. Proteins of this family are usually involved in the quorum sensing system, through the perception of autoinducers (AHLs) produced by a cognate LuxI. However, Psa does not produce AHLs according to the lack of LuxI-encoding gene. It has been proposed that the so-called LuxR solos may be involved in the perception of environmental stimuli. We thus hypothesised that Psa LuxR-like receptors could be involved in host-derived signal sensing. Psa virulence traits, i.e., biofilm formation, motility and endophytic colonisation, were stimulated by growing the pathogen in host plant extracts, but not in non-host plant extracts or rich medium. Moreover, the phenotypic analyses of Psa mutant strains lacking the LuxR solo-encoding genes, demonstrated that PsaR2 plays a major role in host recognition and induction of virulence responses. The heterologous expression of PsaR2, followed by affinity chromatography and fraction activity assessment, confirmed the specific recognition of plant-derived components by this sensor. Overall, these data provide a deeper understanding of the regulation of Psa virulence through interkingdom communication, which represents a interesting target for the development of tolerant/resistant genotypes or innovative control strategies.


Asunto(s)
Pseudomonas syringae , Enfermedades de las Plantas/microbiología , Extractos Vegetales , Pseudomonas syringae/genética , Transactivadores/genética , Transactivadores/metabolismo , Virulencia/genética
4.
Microorganisms ; 9(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34442697

RESUMEN

Plant-associated microbes can shape plant phenotype, performance, and productivity. Cultivation methods can influence the plant microbiome structure and differences observed in the nutritional quality of differently grown fruits might be due to variations in the microbiome taxonomic and functional composition. Here, the influence of organic and integrated pest management (IPM) cultivation on quality, aroma and microbiome of raspberry (Rubus idaeus L.) fruits was evaluated. Differences in the fruit microbiome of organic and IPM raspberry were examined by next-generation sequencing and bacterial isolates characterization to highlight the potential contribution of the resident-microflora to fruit characteristics and aroma. The cultivation method strongly influenced fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. Organic cultivation resulted in smaller fruits with a higher anthocyanidins content and lower titratable acidity content in comparison to IPM berries. Management practices also influenced the amounts of acids, ketones, aldehydes and monoterpenes, emitted by fruits. Our results suggest that the effects on fruit quality could be related to differences in the population of Gluconobacter, Sphingomonas, Rosenbergiella, Brevibacillus and Methylobacterium on fruit. Finally, changes in fruit aroma can be partly explained by volatile organic compounds (VOCs) emitted by key bacterial genera characterizing organic and IPM raspberry fruits.

5.
Clin Case Rep ; 9(6): e04238, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188925

RESUMEN

Although lymphopenia is currently considered a good predictor for the prognosis of COVID-19, it must be critically evaluated in patients with CLL, where other clinical markers should be considered to define the prognosis and treatment.

6.
Trends Plant Sci ; 26(9): 968-983, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147324

RESUMEN

Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.


Asunto(s)
Bacterias , Desarrollo de la Planta , Plantas
7.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922148

RESUMEN

Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host's immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation.


Asunto(s)
Actinidia/inmunología , Etilenos/metabolismo , Interacciones Huésped-Patógeno/inmunología , Enfermedades de las Plantas/inmunología , Pseudomonas/patogenicidad , Virulencia , Actinidia/crecimiento & desarrollo , Actinidia/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/clasificación
8.
Microb Ecol ; 80(1): 81-102, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31897570

RESUMEN

Since 2008, the kiwifruit industry has been devastated by a pandemic outbreak of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker. This disease has become the most significant limiting factor in kiwifruit production. Psa colonizes different organs of the host plant, causing a specific symptomatology on each of them. In addition, the systemic invasion of the plant may quickly lead to plant death. Despite the massive risk that this disease poses to the kiwifruit industry, studies focusing on Psa ecology have been sporadic, and a comprehensive description of the disease epidemiology is still missing. Optimal environmental conditions for infection, dispersal and survival in the environment, or the mechanisms of penetration and colonization of host tissues have not been fully elucidated yet. The present work aims to provide a synthesis of the current knowledge, and a deeper understanding of the epidemiology of kiwifruit bacterial canker based on new experimental data. The pathogen may survive in the environment or overwinter in dormant tissues and be dispersed by wind or rain. Psa was observed in association with several plant structures (stomata, trichomes, lenticels) and wounds, which could represent entry points for apoplast infection. Environmental conditions also affect the bacterial colonization, with lower optimum values of temperature and humidity for epiphytic than for endophytic growth, and disease incidence requiring a combination of mild temperature and leaf wetness. By providing information on Psa ecology, these data sets may contribute to plan efficient control strategies for kiwifruit bacterial canker.


Asunto(s)
Actinidia/fisiología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología
9.
Microb Ecol ; 79(2): 383-396, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31359073

RESUMEN

The phyllosphere is a complex environment where microbes communicate through signalling molecules in a system, generally known as quorum sensing (QS). One of the most common QS systems in Gram-negative proteobacteria is based on the production of N-acyl homoserine lactones (AHLs) by a LuxI synthase and their perception by a LuxR sensor. Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit, colonises plant phyllosphere before penetrating via wounds and natural openings. Since Psa genome encodes three LuxR solos without a cognate LuxI, this bacterium may perceive diffusible signals, but it cannot produce AHLs, displaying a non-canonical QS system. The elucidation of the mechanisms underlying the perception of environmental cues in the phyllosphere by this pathogen and their influence on the onset of pathogenesis are of crucial importance for a long-lasting and sustainable management of the bacterial canker of kiwifruit. Here, we report the ability of Psa to sense its own population density and the presence of surrounding bacteria. Moreover, we show that Psa can perceive AHLs, indicating that AHL-producing neighbouring bacteria may regulate Psa virulence in the host. Our results suggest that the ecological environment is important in determining Psa fitness and pathogenic potential. This opens new perspectives in the use of more advanced biochemical and microbiological tools for the control of bacterial canker of kiwifruit.


Asunto(s)
Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Microbianas , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Interacciones Microbianas/genética , Enfermedades de las Plantas/microbiología , Virulencia
10.
Sci Rep ; 9(1): 14127, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576006

RESUMEN

LED lighting in indoor farming systems allows to modulate the spectrum to fit plant needs. Red (R) and blue (B) lights are often used, being highly active for photosynthesis. The effect of R and B spectral components on lettuce plant physiology and biochemistry and resource use efficiency were studied. Five red:blue (RB) ratios (0.5-1-2-3-4) supplied by LED and a fluorescent control (RB = 1) were tested in six experiments in controlled conditions (PPFD = 215 µmol m-2 s-1, daylength 16 h). LED lighting increased yield (1.6 folds) and energy use efficiency (2.8 folds) as compared with fluorescent lamps. Adoption of RB = 3 maximised yield (by 2 folds as compared with RB = 0.5), also increasing leaf chlorophyll and flavonoids concentrations and the uptake of nitrogen, phosphorus, potassium and magnesium. As the red portion of the spectrum increased, photosystem II quantum efficiency decreased but transpiration decreased more rapidly, resulting in increased water use efficiency up to RB = 3 (75 g FW L-1 H2O). The transpiration decrease was accompanied by lower stomatal conductance, which was associated to lower stomatal density, despite an increased stomatal size. Both energy and land surface use efficiency were highest at RB ≥ 3. We hereby suggest a RB ratio of 3 for sustainable indoor lettuce cultivation.


Asunto(s)
Lactuca/fisiología , Fotosíntesis/fisiología , Clorofila/metabolismo , Color , Lactuca/metabolismo , Luz , Iluminación/métodos , Fotoperiodo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
11.
Front Plant Sci ; 10: 305, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918510

RESUMEN

Indoor plant cultivation can result in significantly improved resource use efficiency (surface, water, and nutrients) as compared to traditional growing systems, but illumination costs are still high. LEDs (light emitting diodes) are gaining attention for indoor cultivation because of their ability to provide light of different spectra. In the light spectrum, red and blue regions are often considered the major plants' energy sources for photosynthetic CO2 assimilation. This study aims at identifying the role played by red:blue (R:B) ratio on the resource use efficiency of indoor basil cultivation, linking the physiological response to light to changes in yield and nutritional properties. Basil plants were cultivated in growth chambers under five LED light regimens characterized by different R:B ratios ranging from 0.5 to 4 (respectively, RB0.5, RB1, RB2, RB3, and RB4), using fluorescent lamps as control (CK1). A photosynthetic photon flux density of 215 µmol m-2 s-1 was provided for 16 h per day. The greatest biomass production was associated with LED lighting as compared with fluorescent lamp. Despite a reduction in both stomatal conductance and PSII quantum efficiency, adoption of RB3 resulted in higher yield and chlorophyll content, leading to improved use efficiency for water and energy. Antioxidant activity followed a spectral-response function, with optimum associated with RB3. A low RB ratio (0.5) reduced the relative content of several volatiles, as compared to CK1 and RB ≥ 2. Moreover, mineral leaf concentration (g g-1 DW) and total content in plant (g plant-1) were influences by light quality, resulting in greater N, P, K, Ca, Mg, and Fe accumulation in plants cultivated with RB3. Contrarily, nutrient use efficiency was increased in RB ≤ 1. From this study it can be concluded that a RB ratio of 3 provides optimal growing conditions for indoor cultivation of basil, fostering improved performances in terms of growth, physiological and metabolic functions, and resources use efficiency.

12.
Hortic Res ; 6: 32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854209

RESUMEN

To decipher the transcriptomic regulation of the on-tree fruit maturation in pear cv. 'Abate Fetel', a RNA-seq transcription analysis identified 8939 genes differentially expressed across four harvesting stages. These genes were grouped into 11 SOTA clusters based on their transcriptional pattern, of which three included genes upregulated while the other four were represented by downregulated genes. Fruit ripening was furthermore investigated after 1 month of postharvest cold storage. The most important variation in fruit firmness, production of ethylene and volatile organic compounds were observed after 5 days of shelf-life at room temperature following cold storage. The role of ethylene in controlling the ripening of 'Abate Fetel' pears was furthermore investigated through the application of 1-methylcyclopropene, which efficiently delayed the progression of ripening by reducing fruit softening and repressing both ethylene and volatile production. The physiological response of the interference at the ethylene receptor level was moreover unraveled investigating the expression pattern of 12 candidate genes, initially selected to validate the RNA-seq profile. This analysis confirmed the effective role of the ethylene competitor in downregulating the expression of cell wall (PG) and ethylene-related genes (ACS, ACO, ERS1, and ERS2), as well as inducing one element involved in the auxin signaling pathway (Aux/IAA), highlighting a possible cross-talk between these two hormones. The expression patterns of these six elements suggest their use as molecular toolkit to monitor at molecular level the progression of the fruit on-tree maturation and postharvest ripening.

13.
ISME J ; 13(4): 847-859, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30504898

RESUMEN

Honeybees are well recognised for their key role in plant reproduction as pollinators. On the other hand, their activity may vector some pathogens, such as the bacterium Erwinia amylovora, the causative agent of fire blight disease in pomaceous plants. In this research, we evaluated whether honeybees are able to discriminate between healthy and E. amylovora-infected flowers, thus altering the dispersal of the pathogen. For this reason, honeybees were previously trained to forage either on inoculated or healthy (control) apple flower. After the training, the two honeybee groups were equally exposed to inoculated and control flowering apple plants. To assess their preference, three independent methods were used: (1) direct count of visiting bees per time frame; (2) incidence on apple flowers of a marker bacterium (Pantoea agglomerans, strain P10c) carried by foragers; (3) quantification of E. amylovora populations in the collected pollen loads, proportional to the number of visits to infected flowers. The results show that both honeybee groups preferred control flowers over inoculated ones. The characterisation of volatile compounds released by flowers revealed a different emission of several bioactive compounds, providing an explanation for honeybee preference. As an unexpected ecological consequence, the influence of infection on floral scent increasing the visit rate on healthy flowers may promote a secondary bacterial spread.


Asunto(s)
Abejas , Erwinia amylovora/fisiología , Malus/fisiología , Enfermedades de las Plantas/microbiología , Animales , Flores/fisiología , Odorantes , Néctar de las Plantas/química , Polen/química , Compuestos Orgánicos Volátiles/química
14.
Hortic Res ; 5: 56, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30393538

RESUMEN

Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as Pseudomonas syringae pv. actinidiae (Psa). This bacterium can colonize both male and female Actinidia flowers, causing flower browning and fall, and systemic invasion of the host plant, eventually leading to its death. However, the process of flower colonization and penetration into the host tissues has not yet been fully elucidated. In addition, the presence of Psa in the pollen from infected flowers, and the role of pollination in the spread of Psa requires confirmation. The present study employed a Psa strain constitutively expressing the fluorescent GFPuv protein, to visualize in vivo flower colonization. Microscopy observations were performed by means of confocal laser scanning and wide-field fluorescent microscopy, and were coupled with the study of Psa population dynamics by quantitative PCR (q-PCR). The pathogen was shown to colonize stigmata, move along the stylar furrow, and penetrate the receptacles via the style or nectarhodes. Once the receptacle was invaded, the pathogen migrated along the flower pedicel and became systemic. Psa was also able to colonize the anthers epiphytically and endophytically. Infected male flowers produced contaminated pollen, which could transmit Psa to healthy plants. Finally, pollinators (Apis mellifera and Bombus terrestris) were studied in natural conditions, showing that, although they can be contaminated with Psa, the pathogen's transmission via pollinators is contrasted by its short survival in the hive.

15.
Front Plant Sci ; 9: 1563, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30464766

RESUMEN

Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of the bacterial canker, the most devastating disease of kiwifruit vines. Before entering the host tissues, this pathogen has an epiphytic growth phase on kiwifruit flowers and leaves, thus the ecological interactions within epiphytic bacterial community may greatly influence the onset of the infection process. The bacterial community associated to the two most important cultivated kiwifruit species, Actinidia chinensis and Actinidia deliciosa, was described both on flowers and leaves using Illumina massive parallel sequencing of the V3 and V4 variable regions of the 16S rRNA gene. In addition, the effect of plant infection by Psa on the epiphytic bacterial community structure and biodiversity was investigated. Psa infection affected the phyllosphere microbiome structures in both species, however, its impact was more pronounced on A. deliciosa leaves, where a drastic drop in microbial biodiversity was observed. Furthermore, we also showed that Psa was always present in syndemic association with Pseudomonas syringae pv. syringae and Pseudomonas viridiflava, two other kiwifruit pathogens, suggesting the establishment of a pathogenic consortium leading to a higher pathogenesis capacity. Finally, the analyses of the dynamics of bacterial populations provided useful information for the screening and selection of potential biocontrol agents against Psa.

16.
Insects ; 9(4)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360545

RESUMEN

Drosophila suzukii causes considerable economic damage to small and thin-skinned fruits including cherry, blueberry, raspberry, grape and strawberry. Since it attacks fruits at the ripening stage, the use of chemical pesticides is limited due to the high risk of residues on fruit. Biological control is thus expected to play an essential role in managing this pest. The Gram-negative bacterium, Photorhabdus luminescens and its symbiotic Heterorhabditis spp. nematode have been shown to be highly pathogenic to insects, with a potential for replacing pesticides to suppress several pests. Insecticidal activity of P. luminescens at different bacterial cell concentrations and its cell-free supernatant were assessed against third-instar larvae and pupae of D. suzukii under laboratory conditions. P. luminescens suspensions had a significant oral and contact toxicity on D. suzukii larvae and pupae, with mortalities up to of 70⁻100% 10 days after treatment. Cell-free supernatant in the diet also doubled mortality rates of feeding larvae. Our results suggest that P. luminescens may be a promising candidate for biological control of D. suzukii, and its use in integrated pest management (IPM) programs is discussed.

17.
BMC Genomics ; 19(1): 585, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30081820

RESUMEN

BACKGROUND: Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy. RESULTS: De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results. CONCLUSIONS: Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field.


Asunto(s)
Actinidia/genética , Perfilación de la Expresión Génica/métodos , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Tiadiazoles/farmacología , Actinidia/efectos de los fármacos , Actinidia/microbiología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Pseudomonas syringae/fisiología , Análisis de Secuencia de ARN
18.
Mol Plant Pathol ; 19(1): 158-168, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27862864

RESUMEN

Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host.


Asunto(s)
Erwinia amylovora/patogenicidad , Malus/metabolismo , Malus/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Ciclopentanos/farmacología , Endófitos/crecimiento & desarrollo , Erwinia amylovora/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malus/genética , Malus/crecimiento & desarrollo , Modelos Biológicos , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Análisis de Componente Principal , Ácido Salicílico/farmacología
19.
Plant Pathol J ; 33(6): 554-560, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29238278

RESUMEN

After 20 years of steady increase, kiwifruit industry faced a severe arrest due to the pandemic spread of the bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa). The bacterium penetrates the host plant primarily via natural openings or wounds, and its spread is mainly mediated by atmospheric events and cultural activities. Since the role of sucking insects as vectors of bacterial pathogens is widely documented, we investigated the ability of Metcalfa pruinosa Say (1830), one of the most common kiwifruit pests, to transmit Psa to healthy plants in laboratory conditions. Psa could be isolated both from insects feeding over experimentally inoculated plants, and from insects captured in Psa-infected orchards. Furthermore, insects were able to transmit Psa from experimentally inoculated plants to healthy ones. In conclusion, the control of M. pruinosa is recommended in the framework of protection strategies against Psa.

20.
Sensors (Basel) ; 17(11)2017 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-29137109

RESUMEN

Electronic nose technology has recently been applied to the detection of several plant diseases and pests, with promising results. However, in spite of its numerous advantages, including operational simplicity, non-destructivity, and bulk sampling, drawbacks include a low sensitivity and specificity in comparison with microbiological and molecular methods. A critical review of the use of an electronic nose for plant disease diagnosis and pest detection is presented, describing the instrumental and procedural advances of sensorial analysis, for the improvement of discrimination between healthy and infected or infested plants. In conclusion, the use of electronic nose technology is suggested to assist, direct, and optimise traditionally adopted diagnostic techniques.


Asunto(s)
Enfermedades de las Plantas , Nariz Electrónica , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...