Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(16): 11083-11094, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38619978

RESUMEN

Molecular lanthanide (Ln) complexes are promising candidates for the development of next-generation quantum technologies. High-symmetry structures incorporating integer spin Ln ions can give rise to well-isolated crystal field quasi-doublet ground states, i.e., quantum two-level systems that may serve as the basis for magnetic qubits. Recent work has shown that symmetry lowering of the coordination environment around the Ln ion can produce an avoided crossing or clock transition within the ground doublet, leading to significantly enhanced coherence. Here, we employ single-crystal high-frequency electron paramagnetic resonance spectroscopy and high-level ab initio calculations to carry out a detailed investigation of the nine-coordinate complexes, [HoIIIL1L2], where L1 = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane and L2 = F- (1) or [MeCN]0 (2). The pseudo-4-fold symmetry imposed by the neutral organic ligand scaffold (L1) and the apical anionic fluoride ion generates a strong axial anisotropy with an mJ = ±8 ground-state quasi-doublet in 1, where mJ denotes the projection of the J = 8 spin-orbital moment onto the ∼C4 axis. Meanwhile, off-diagonal crystal field interactions give rise to a giant 116.4 ± 1.0 GHz clock transition within this doublet. We then demonstrate targeted crystal field engineering of the clock transition by replacing F- with neutral MeCN (2), resulting in an increase in the clock transition frequency by a factor of 2.2. The experimental results are in broad agreement with quantum chemical calculations. This tunability is highly desirable because decoherence caused by second-order sensitivity to magnetic noise scales inversely with the clock transition frequency.

2.
Inorg Chem ; 61(26): 9906-9917, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35727882

RESUMEN

The recently reported compound [DyIIILF](CF3SO3)2·H2O (L = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane) displays a strong axial magnetic anisotropy, due to the short axial Dy-F bond, and single-molecule magnet (SMM) behavior. Following our earlier [DyIIILF]2+ work, herein we report the systematic structural and magnetic study of a family of [LnIIILF](CF3SO3)2·H2O compounds (Ln(III) = 1-Ce, 2-Pr, 3-Nd, 4-Eu, 5-Tb, 6-Ho, 7-Er, 8-Tm, and 9-Yb). From this series, the Ce(III) and Nd(III) analogues show slow relaxation of the magnetization under an applied direct current magnetic field, which is modeled using a Raman process. Complete active space self-consistent field theoretical calculations are employed to understand the relaxation pathways in 1-Ce and 3-Nd and also reveal a large tunnel splitting for 5-Tb. Additional computational studies on model compounds where we remove the axial F- ligand, or replace F- with I-, highlight the importance of the F- ligand in creating a strong axial crystal field for 1-Ce and 3-Nd and for promoting the SMM behavior. Importantly, this systematic study provides insight into the magnetic properties of these lighter lanthanide ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...