Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38895197

RESUMEN

Shannon Information theory has long been a tool of choice to measure empirically how populations of neurons in the brain encode information about cognitive variables. Recently, Partial Information Decomposition (PID) has emerged as principled way to break down this information into components identifying not only the unique information carried by each neuron, but also whether relationships between neurons generate synergistic or redundant information. While it has been long recognized that Shannon information measures on neural activity suffer from a (mostly upward) limited sampling estimation bias, this issue has largely been ignored in the burgeoning field of PID analysis of neural activity. We used simulations to investigate the limited sampling bias of PID computed from discrete probabilities (suited to describe neural spiking activity). We found that PID suffers from a large bias that is uneven across components, with synergy by far the most biased. Using approximate analytical expansions, we found that the bias of synergy increases quadratically with the number of discrete responses of each neuron, whereas the bias of unique and redundant information increase only linearly or sub-linearly. Based on the understanding of the PID bias properties, we developed simple yet effective procedures that correct for the bias effectively, and that improve greatly the PID estimation with respect to current state-of-the-art procedures. We apply these PID bias correction procedures to datasets of 53117 pairs neurons in auditory cortex, posterior parietal cortex and hippocampus of mice performing cognitive tasks, deriving precise estimates and bounds of how synergy and redundancy vary across these brain regions.

2.
Cell Rep ; 43(6): 114244, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796851

RESUMEN

Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open question how this information emerges and intersects together during learning. Current evidence points to two possible learning-related changes: sensory information increases in the primary cortex or sensory information remains stable, but its readout efficiency in association cortices increases. We investigated this question by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an object localization task. We quantified sensory- and behavior-related information and estimated how much sensory information was used to instruct perceptual choices as learning progressed. We find that sensory information increases from the start of training, while choice information is mostly present in the later stages of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in perceptual learning.


Asunto(s)
Aprendizaje , Neuronas , Corteza Somatosensorial , Animales , Corteza Somatosensorial/fisiología , Aprendizaje/fisiología , Ratones , Neuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Conducta Animal/fisiología , Femenino
3.
Curr Biol ; 34(9): 1831-1843.e7, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38604168

RESUMEN

The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.


Asunto(s)
Cuerpo Estriado , Aprendizaje , Corteza Motora , Destreza Motora , Ratas Long-Evans , Animales , Corteza Motora/fisiología , Aprendizaje/fisiología , Ratas , Cuerpo Estriado/fisiología , Masculino , Destreza Motora/fisiología
4.
Brain Inform ; 10(1): 34, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052917

RESUMEN

Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.

5.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398375

RESUMEN

Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions. FIT merges the Wiener-Granger causality principle with information-content specificity. We first derive FIT and prove analytically its key properties. We then illustrate and test them with simulations of neural activity, demonstrating that FIT identifies, within the total information flowing between regions, the information that is transmitted about specific features. We then analyze three neural datasets obtained with different recording methods, magneto- and electro-encephalography, and spiking activity, to demonstrate the ability of FIT to uncover the content and direction of information flow between brain regions beyond what can be discerned with traditional anaytical methods. FIT can improve our understanding of how brain regions communicate by uncovering previously hidden feature-specific information flow.

6.
Brain Inform ; 9(1): 28, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36480076

RESUMEN

How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity between the activity of different simultaneously recorded neurons is an important and open problem in systems neuroscience. Here, we report methodological progress to address this issue. We first simulated recurrent neural network models of spiking neurons with spike timing-dependent plasticity mechanisms that generate time-varying synaptic and functional coupling. We then used these simulations to test analytical approaches that infer fixed and time-varying properties of synaptic connectivity from directed functional connectivity measures, such as cross-covariance and transfer entropy. We found that, while both cross-covariance and transfer entropy provide robust estimates of which synapses are present in the network and their communication delays, dynamic functional connectivity measured via cross-covariance better captures the evolution of synaptic weights over time. We also established how measures of information transmission delays from static functional connectivity computed over long recording periods (i.e., several hours) can improve shorter time-scale estimates of the temporal evolution of synaptic weights from dynamic functional connectivity. These results provide useful information about how to accurately estimate the temporal variation of synaptic strength from spiking activity measures.

7.
Methods Protoc ; 3(1)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023996

RESUMEN

Slow waves (SWs) are spatio-temporal patterns of cortical activity that occur both during natural sleep and anesthesia and are preserved across species. Even though electrophysiological recordings have been largely used to characterize brain states, they are limited in the spatial resolution and cannot target specific neuronal population. Recently, large-scale optical imaging techniques coupled with functional indicators overcame these restrictions, and new pipelines of analysis and novel approaches of SWs modelling are needed to extract relevant features of the spatio-temporal dynamics of SWs from these highly spatially resolved data-sets. Here we combined wide-field fluorescence microscopy and a transgenic mouse model expressing a calcium indicator (GCaMP6f) in excitatory neurons to study SW propagation over the meso-scale under ketamine anesthesia. We developed a versatile analysis pipeline to identify and quantify the spatio-temporal propagation of the SWs. Moreover, we designed a computational simulator based on a simple theoretical model, which takes into account the statistics of neuronal activity, the response of fluorescence proteins and the slow waves dynamics. The simulator was capable of synthesizing artificial signals that could reliably reproduce several features of the SWs observed in vivo, thus enabling a calibration tool for the analysis pipeline. Comparison of experimental and simulated data shows the robustness of the analysis tools and its potential to uncover mechanistic insights of the Slow Wave Activity (SWA).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...