Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(2): 245-258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37888867

RESUMEN

Only a fraction of the total number of per- and polyfluoroalkyl substances (PFAS) are monitored on a routine basis using targeted chemical analyses. We report on an approach toward identifying bioactive substances in environmental samples using effect-directed analysis by combining toxicity testing, targeted chemical analyses, and suspect screening. PFAS compete with the thyroid hormone thyroxin (T4 ) for binding to its distributor protein transthyretin (TTR). Therefore, a TTR-binding bioassay was used to prioritize unknown features for chemical identification in a PFAS-contaminated sediment sample collected downstream of a factory producing PFAS-coated paper. First, the TTR-binding potencies of 31 analytical PFAS standards were determined. Potencies varied between PFAS depending on carbon chain length, functional group, and, for precursors to perfluoroalkyl sulfonic acids (PFSA), the size or number of atoms in the group(s) attached to the nitrogen. The most potent PFAS were the seven- and eight-carbon PFSA, perfluoroheptane sulfonic acid (PFHpS) and perfluorooctane sulfonic acid (PFOS), and the eight-carbon perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), which showed approximately four- and five-times weaker potencies, respectively, compared with the native ligand T4 . For some of the other PFAS tested, TTR-binding potencies were weak or not observed at all. For the environmental sediment sample, not all of the bioactivity observed in the TTR-binding assay could be assigned to the PFAS quantified using targeted chemical analyses. Therefore, suspect screening was applied to the retention times corresponding to observed TTR binding, and five candidates were identified. Targeted analyses showed that the sediment was dominated by the di-substituted phosphate ester of N-ethyl perfluorooctane sulfonamido ethanol (SAmPAP diester), whereas it was not bioactive in the assay. SAmPAP diester has the potential for (bio)transformation into smaller PFAS, including PFOS. Therefore, when it comes to TTR binding, the hazard associated with this substance is likely through (bio)transformation into more potent transformation products. Environ Toxicol Chem 2024;43:245-258. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Prealbúmina , Ácidos Alcanesulfónicos/análisis , Ácidos Sulfónicos , Fluorocarburos/toxicidad , Carbono
2.
Environ Health Perspect ; 128(1): 17015, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32003587

RESUMEN

BACKGROUND: House dust contains many organic contaminants that can compete with the thyroid hormone (TH) thyroxine (T4) for binding to transthyretin (TTR). How these contaminants work together at levels found in humans and how displacement from TTR in vitro relates to in vivo T4-TTR binding is unknown. OBJECTIVES: Our aims were to determine the TTR-binding potency for contaminant mixtures as found in house dust, maternal serum, and infant serum; to study whether the TTR-binding potency of the mixtures follows the principle of concentration addition; and to extrapolate the in vitro TTR-binding potency to in vivo inhibition levels of T4-TTR binding in maternal and infant serum. METHODS: Twenty-five contaminants were tested for their in vitro capacity to compete for TTR-binding with a fluorescent FITC-T4 probe. Three mixtures were reconstituted proportionally to median concentrations for these chemicals in house dust, maternal serum, or infant serum from Nordic countries. Measured concentration-response curves were compared with concentration-response curves predicted by concentration addition. For each reconstituted serum mixture, its inhibitor-TTR dissociation constant (Ki) was used to estimate inhibition levels of T4-TTR binding in human blood. RESULTS: The TTR-binding potency of the mixtures was well predicted by concentration addition. The ∼20% inhibition in FITC-T4 binding observed for the mixtures reflecting median concentrations in maternal and infant serum was extrapolated to 1.3% inhibition of T4-TTR binding in maternal and 1.5% in infant blood. For nontested mixtures reflecting high-end serum concentrations, these estimates were 6.2% and 4.9%, respectively. DISCUSSION: The relatively low estimated inhibition levels at median exposure levels may explain why no relationship between exposure to TTR-binding compounds and circulating T4 levels in humans has been reported, so far. We hypothesize, however, that 1.3% inhibition of T4-TTR binding may ultimately be decisive for reaching a status of maternal hypothyroidism or hypothyroxinemia associated with impaired neurodevelopment in children. https://doi.org/10.1289/EHP5911.


Asunto(s)
Disruptores Endocrinos/análisis , Prealbúmina/química , Glándula Tiroides/efectos de los fármacos , Polvo , Disruptores Endocrinos/toxicidad , Humanos , Hipotiroidismo , Hormonas Tiroideas , Tiroxina/sangre
3.
Neurotoxicology ; 69: 266-277, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30056177

RESUMEN

Dysregulation of neuronal intracellular Ca2+ homeostasis can play a crucial role in many neurotoxic effects, including impaired brain development and behavioral dysfunctions. This study examined 40 suspected neurotoxicants from different chemical classes for their capacity to alter Ca2+ release and uptake from rat cortical microsomes. First, ten suspected neurotoxicants have been tested using a well-established cuvette-based Ca2+ flux assay. Five out of ten compounds (TOCP, endosulfan, PCB-95, chlorpyrifos and BDE-49) showed a significant, concentration-dependent alteration of Ca2+ release and uptake in adult rat cortical microsomes. The original cuvette assay was downscaled and customized to a fast, higher throughput microplate method and the 40 suspected neurotoxicants were screened for their effects on intracellular Ca2+homeostasis. In decreasing order of potency, the 15 test compounds that showed the strongest alteration of Ca2+ levels in adult rat microsomes were TOCP, endosulfan, BDE-49, 6-OH-BDE-47, PCB-95, permethrin, alpha-cypermethrin, chlorpyrifos, bioallethrin, cypermethrin, RDP, DEHP, DBP, BDE-47, and PFOS. Results from co-exposure experiments with selective inhibitors suggested that for some compounds Ca2+ releasing effects could be attributed to RyR activation (PFOS, DBP, and DEHP) or to SERCA inhibition (a potential novel mechanism of action for all four tested pyrethroid insecticides). The effects of the two most potent compounds, endosulfan and TOCP, were not blocked by any of the inhibitors tested, indicating other possible mechanism of action. For all other potent test compounds, a combined effect on RyR, IP3R, and/or SERCA has been observed. PFOS and 6-OH-BDE-47 caused increased Ca2+ release from adult but not from neonatal rat brain microsomes, indicating age-dependent difference in susceptibility to these test compounds. The current study suggests that the neurotoxic potential of compounds belonging to different chemical classes could partly be attributed to the effects on intracellular Ca2+ release and uptake. Although further validation is required, the downscaled method developed in this study presents technical advance that could be used for the future screening of suspected intracellular Ca2+ disruptors.


Asunto(s)
Calcio/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Contaminantes Ambientales/toxicidad , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Animales , Femenino , Ratas , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
4.
Int J Mol Sci ; 18(4)2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441764

RESUMEN

Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish (Danio rerio). We used label-free Stimulated Raman Scattering (SRS) microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf) and compared standard feed conditions (StF) to a high fat diet (HFD) or high glucose diet (HGD). We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM) or Tris(1,3-dichloroisopropyl)phosphate (TDCiPP, 0.5 µM) from 0-6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda, lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo.


Asunto(s)
Adipogénesis/efectos de los fármacos , Dieta Alta en Grasa , Microscopía Óptica no Lineal/métodos , Compuestos Organofosforados/toxicidad , Compuestos de Trialquiltina/toxicidad , Pez Cebra/metabolismo , Animales , Análisis por Conglomerados , Contaminantes Ambientales/toxicidad , Expresión Génica/efectos de los fármacos , Glucosa/toxicidad , Larva/química , Larva/efectos de los fármacos , Larva/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Pez Cebra/crecimiento & desarrollo
5.
Environ Sci Technol ; 45(19): 8552-8, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21823594

RESUMEN

Effect-directed analysis (EDA) is an approach used to identify (unknown) contaminants in complex samples which cause toxicity, using a combination of biology and chemistry. The goal of this work was to apply EDA to identify developmental toxicants in soil samples collected from a former municipal landfill site. Soil samples were extracted, fractionated, and tested for developmental effects with an embryotoxicity assay in the zebrafish Danio rerio. Gas chromatograph mass selective detection (GC-MSD) chemical screening was used to reveal candidate developmental toxicants in fractions showing effects. In a parallel study, liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry was also applied to one polar subfraction (Hoogenboom et al. J. Chromatogr. A2009, 1216, 510-519). EDA resulted in the identification of a number of previously unknown developmental toxicants, which were confirmed to be present in soil by GC-MS. These included 11H-benzo[b]fluorene, 9-methylacridine, 4-azapyrene, and 2-phenylquinoline, as well as one known developmental toxicant (retene). This work revealed the presence of novel contaminants in the environment that may affect vertebrate development, which are not subject to monitoring or regulation under current soil quality assessment guidelines.


Asunto(s)
Ciudades , Suelo/química , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Fraccionamiento Químico , Embrión no Mamífero/efectos de los fármacos , Fertilización/efectos de los fármacos , Crecimiento y Desarrollo/efectos de los fármacos , Países Bajos , Compuestos Orgánicos/química , Compuestos Orgánicos/toxicidad , Fenotipo , Suelo/normas , Contaminantes Químicos del Agua/química
6.
Toxicol Sci ; 121(1): 88-100, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21357386

RESUMEN

The toxic equivalency concept used for the risk assessment of polychlorinated biphenyls (PCBs) is based on the aryl hydrocarbon receptor (AhR)-mediated toxicity of coplanar dioxin-like (DL) PCBs. Most PCBs in the environment, however, are non-dioxin-like (NDL) PCBs that cannot adopt a coplanar structure required for AhR activation. For NDL-PCBs, no generally accepted risk concept is available because their toxicity is insufficiently characterized. Here, we systematically determined in vitro toxicity profiles for 24 PCBs regarding 10 different mechanisms of action. Prior to testing, NDL-PCB standards were purified to remove traces of DL compounds. All NDL-PCBs antagonized androgen receptor activation and inhibited gap junctional intercellular communication (GJIC). Lower chlorinated NDL-PCBs were weak estrogen receptor (ER) agonists, whereas higher chlorinated NDL-PCBs were weak ER antagonists. Several NDL-PCBs inhibited estradiol-sulfotransferase activity and bound to transthyretin (TTR) but with much weaker potencies than reported for hydroxylated PCB metabolites. AhR-mediated expression of uridine-glucuronyl transferase isozyme UGT1A6 was induced by DL-PCBs only. Hierarchical cluster analysis of the toxicity profiles yielded three separate clusters of NDL-PCBs and a fourth cluster of reference DL-PCBs. Due to small differences in relative potency among congeners, the highly abundant indicator PCBs 28, 52, 101, 118, 138, 153, and 180 also contributed most to the antiandrogenic, (anti)estrogenic, antithyroidal, tumor-promoting, and neurotoxic potencies calculated for PCB mixtures reported in human samples, whereas the most potent AhR-activating DL-PCB-126 contributed at maximum 0.2% to any of these calculated potencies. PCB-168 is recommended as an additional indicator congener, given its relatively high abundance and antiandrogenic, TTR-binding, and GJIC-inhibiting potencies.


Asunto(s)
Bifenilos Policlorados/toxicidad , Humanos , Técnicas In Vitro , Bifenilos Policlorados/administración & dosificación
7.
Environ Toxicol Chem ; 30(4): 898-904, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21191882

RESUMEN

In bioassays, exposure concentrations of test compounds are usually expressed as nominal concentrations. As a result of various processes, such as adsorption, degradation, or uptake, the actual freely dissolved concentration of the test compound may differ from the nominal concentration. The goal of the present study was to develop a method to dose passively the freely dissolved fraction of organic chemicals in an in vitro bioassay with adherent cells. To this end, a polydimethylsiloxane (PDMS) film-based method was developed for a reporter gene assay for dioxin-like compounds in a rat liver cell line. Polydimethylsiloxane films loaded with test compounds ensure that the concentration during exposure is in equilibrium and that the ratio between the concentration on the film and the concentration in medium is constant. Benzo[k]fluoranthene (BkF) was used as a model compound to develop the passive dosing method in transwell plates, which was further tested with a complex mixture, i.e., an extract prepared from a contaminated sediment. A higher dioxin-like activity was found when extracts were dosed by passive dosing with PDMS than when directly added to medium. Comparison with analysis of the concentration of BkF in medium shows that passive dosing of individual chemicals may not be necessary if freely dissolved concentrations are known. Use of PDMS for passive dosing of complex samples may represent a more realistic method for exposure in in vitro bioassays.


Asunto(s)
Bioensayo/métodos , Dimetilpolisiloxanos/química , Fluorenos/toxicidad , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Línea Celular , Fraccionamiento Químico , Relación Dosis-Respuesta a Droga , Fluorenos/química , Sedimentos Geológicos/química , Cinética , Ratas , Contaminantes Químicos del Agua/química
8.
Environ Sci Technol ; 42(5): 1773-9, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18441834

RESUMEN

Polybrominated diphenylethers (PBDEs) are ubiquitous in the environment, with the lower brominated congener 2,2',4,4'-tetrabromodiphenylether (BDE47) among the most prevalent. The phenolic PBDE, 6-hydroxy-BDE47 (6-OH-BDE47) is both an important metabolite formed by in vivo metabolism of BDE47 and a natural product produced by marine organisms such as algae. Although this compound has been detected in humans and wildlife, including fish, virtually nothing is known of its in vivo toxicity. Here we report that 6-OH-BDE47 is acutely toxic in developing and adult zebrafish at concentrations in the nanomolar (nM) range. To identify possible mechanisms of toxicity, we used microarray analysis as a diagnostic tool. Zebrafish embryonic fibroblast (PAC2) cells were exposed to 6-OH-BDE47, BDE47, and the methoxylated metabolite 6-MeO-BDE47. These experiments revealed that 6-OH-BDE47 alters the expression of genes involved in proton transport and carbohydrate metabolism. These findings, combined with the acute toxicity, suggested that 6-OH-BDE47 causes disruption of oxidative phosphorylation (OXPHOS).Therefore, we further investigated the effect of 6-OH-BDE47 on OXPHOS in zebrafish mitochondria. Results show unequivocally that this compound is a potent uncoupler of OXPHOS and is an inhibitor of complex II of the electron transport chain. This study provides the first evidence of the in vivo toxicity and an important potential mechanism of toxicity of an environmentally relevant phenolic PBDE of both anthropogenic and natural origin. The results of this study emphasize the need for further investigation on the presence and toxicity of this class of polybrominated compounds.


Asunto(s)
Bifenilos Polibrominados/toxicidad , Animales , Éteres , Análisis de Secuencia por Matrices de Oligonucleótidos , Pez Cebra
9.
Environ Toxicol Chem ; 23(1): 32-40, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14768864

RESUMEN

In vitro bioassays are valuable tools for screening environmental samples for the presence of bioactive (e.g., endocrine-disrupting) compounds. They can be used to direct chemical analysis of active compounds in toxicity identification and evaluation (TIE) approaches. In the present study, five in vitro bioassays were used to profile toxic potencies in sediments, with emphasis on endocrine disruption. Nonpolar total and acid-treated stable extracts of sediments from 15 locations in the Rhine Meuse estuary area in The Netherlands were assessed. Dioxin-like and estrogenic activities (using dioxin-responsive chemical-activated luciferase gene expression [DR-CALUX] and estrogen-responsive chemical-activated luciferase gene expression [ER-CALUX] assays) as well as genotoxicity (UMU test) and nonspecific toxic potency (Vibrio fischeri assay) were observed in sediment extracts. For the first time, to our knowledge, in vitro displacement of thyroid hormone thyroxine (T4) from the thyroid hormone transport protein thransthyretin by sediment extracts was observed, indicating the presence of compounds potentially able to disrupt T4 plasma transport processes. Antiestrogenic activity was also observed in sediment. The present study showed the occurrence of endocrine-disrupting potencies in sediments from the Dutch delta and the suitability of the ER- and DR-CALUX bioassays to direct endocrine-disruption TIE studies.


Asunto(s)
Sistema Endocrino/efectos de los fármacos , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/toxicidad , Bioensayo/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Alemania , Luciferasas/análisis , Luciferasas/biosíntesis , Tiroxina/metabolismo , Vibrio
10.
Toxicol Sci ; 68(2): 361-71, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12151632

RESUMEN

Earlier studies at our laboratory indicated that several hydroxylated polychlorinated biphenyls (OH-PCBs) detected in human blood could specifically inhibit thyroxine (T(4)) transport by competitive binding to the thyroid hormone transport protein transthyretin (TTR) in vitro. In the present study we investigated the effects of prenatal exposure to 5 mg/kg body weight of [14C]-labeled or unlabeled 4-OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107), one of the major metabolites of PCBs detected in human blood, from gestation days (GD) 10 to 16 on thyroid hormone status and metabolism in pregnant rats and their fetuses at GD 17 and GD 20. 4-OH-CB107 is a metabolite of both 2,3,3',4,4'-pentachlorobiphenyl (CB-105) and 2,3',4,4',5-pentachlorobiphenyl (CB-118). We were able to show the accumulation of 4-OH-CB107 in the fetal compartment. The fetal/maternal ratios at GD 20 in liver, cerebellum, and plasma were 11.0, 2.6, and 1.2, respectively. The 14C-4-OH-CB107-derived radioactivity in plasma was bound to TTR in both dams and fetuses. Fetal plasma TT(4) and FT(4) levels were significantly decreased at GD 17 and GD 20 (89% and 41% respectively at GD 20). Fetal thyroid stimulating hormone levels were increased by 124% at GD 20. The T(4) concentrations in fetal forebrain homogenates at GD20 were reduced by 35%, but no effects could be detected on brain T(3) concentrations. The deiodination of T(4) to T(3) was significantly increased in fetal forebrain homogenates at GD 17, and unaltered at GD 20. In addition, no alterations were observed in maternal and fetal hepatic T(4)-UDP-glucuronosyltransferase activity, type I deiodinase activity, and EROD activity. In conclusion, exposure of pregnant rats to 4-OH-CB107 results in the distribution of the compound in the maternal and fetal compartment, which is probably caused by the binding of the PCB metabolite to TTR. Consequently, TT(4) levels in fetal plasma and brain samples were reduced. Despite reductions in fetal brain T(4) levels, the active hormone (T(3)) in fetal brains remained unaffected.


Asunto(s)
Feto/efectos de los fármacos , Homeostasis , Exposición Materna , Intercambio Materno-Fetal , Bifenilos Policlorados/farmacocinética , Hormonas Tiroideas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Femenino , Feto/metabolismo , Masculino , Embarazo , Ratas , Ratas Wistar , Tirotropina/sangre , Tiroxina/metabolismo , Distribución Tisular , Triyodotironina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...