Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1368622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741889

RESUMEN

There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.


Asunto(s)
Antibacterianos , Infecciones por Escherichia coli , Escherichia coli , Transferencia de Gen Horizontal , Plásmidos , beta-Lactamasas , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Plásmidos/genética , Humanos , Infecciones por Escherichia coli/microbiología , beta-Lactamasas/genética , Antibacterianos/farmacología , Conjugación Genética , Proteínas de Escherichia coli/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , América Latina , Farmacorresistencia Bacteriana/genética
2.
Curr Microbiol ; 81(3): 76, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267719

RESUMEN

Two metallo-ß-lactamase-producing Klebsiella pneumoniae (HA30 and HA31) were isolated in a hospital in Argentina during 2018. K. pneumoniae HA30 was isolated from a rectal swab during the epidemiological surveillance for carbapenemase-producing strains, while K. pneumoniae HA31 was collected from the same patient 4 days after hospitalization. The aim of the present study was to identify the clonal relationships and resistome of these two NDM-producing K. pneumoniae strains isolated from a patient with a fatal outcome. Whole-genome sequencing (WGS) was performed using Illumina MiSeq-I, and subsequent analysis involved genome assembly, annotation, antibiotic resistance gene identification, multilocus sequence typing (MLST), and plasmid characterization using bioinformatics tools. Conjugation assays to E. coli J53 was conducted as previously described. K. pneumoniae HA30 exhibited extensively drug-resistant phenotype, while HA31 was multidrug-resistant as defined by Magiorakos et al., including both resistance to carbapenems, aminoglycosides and ciprofloxacin with blaNDM-5, blaCTX-M-15 and rmtB genes found in both strains. MLST analysis showed that both strains belonged to ST11, differing by only 4 cgSNPs, indicating that K. pneumoniae HA30 and HA31 were the same strain. Conjugation assays revealed that K. pneumoniae HA31 strain possessed a transferable plasmid to E. coli J53. Bioinformatics studies identified that the same strain colonizing an inpatient during hospital admission subsequently caused the infection leading to a fatal outcome, being the first report of blaNDM-5, rmtB and blaCTX-M-15 genes in a K. pneumoniae ST11 strain from Latin America. Our results also highlighted the importance of focusing on epidemiological surveillance programs.


Asunto(s)
Escherichia coli , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus , Genómica , Antibacterianos/farmacología , beta-Lactamasas/genética
3.
FEMS Microbes ; 4: xtad009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333444

RESUMEN

Acinetobacter baumannii is a Gram-negative bacterium increasingly implicated in hospital-acquired infections and outbreaks. Effective prevention and control of such infections are commonly challenged by the frequent emergence of multidrug-resistant strains. Here we introduce Ab-web (https://www.acinetobacterbaumannii.no), the first online platform for sharing expertise on A. baumannii. Ab-web is a species-centric knowledge hub, initially with 10 articles organized into two main sections, 'Overview' and 'Topics', and three themes, 'epidemiology', 'antibiotic resistance', and 'virulence'. The 'workspace' section provides a spot for colleagues to collaborate, build, and manage joint projects. Ab-web is a community-driven initiative amenable to constructive feedback and new ideas.

4.
mSystems ; 8(3): e0073422, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37184409

RESUMEN

Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.


Asunto(s)
Acinetobacter baumannii , Infección Hospitalaria , Humanos , Acinetobacter baumannii/genética , Antibacterianos/metabolismo , Reacción en Cadena de la Polimerasa , Infección Hospitalaria/diagnóstico , Biomarcadores/metabolismo
5.
Front Microbiol ; 14: 1124225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925471

RESUMEN

Shewanella spp. are Gram-negative rods widely disseminated in aquatic niches that can also be found in human-associated environments. In recent years, reports of infections caused by these bacteria have increased significantly. Mobilome and resistome analysis of a few species showed that they are versatile; however, comprehensive comparative studies in the genus are lacking. Here, we analyzed the genetic traits of 144 genomes from Shewanella spp. isolates focusing on the mobilome, resistome, and virulome to establish their evolutionary relationship and detect unique features based on their genome content and habitat. Shewanella spp. showed a great diversity of mobile genetic elements (MGEs), most of them associated with monophyletic lineages of clinical isolates. Furthermore, 79/144 genomes encoded at least one antimicrobial resistant gene with their highest occurrence in clinical-related lineages. CRISPR-Cas systems, which confer immunity against MGEs, were found in 41 genomes being I-E and I-F the more frequent ones. Virulome analysis showed that all Shewanella spp. encoded different virulence genes (motility, quorum sensing, biofilm, adherence, etc.) that may confer adaptive advantages for survival against hosts. Our data revealed that key accessory genes are frequently found in two major clinical-related groups, which encompass the opportunistic pathogens Shewanella algae and Shewanella xiamenensis together with several other species. This work highlights the evolutionary nature of Shewanella spp. genomes, capable of acquiring different key genetic traits that contribute to their adaptation to different niches and facilitate the emergence of more resistant and virulent isolates that impact directly on human and animal health.

6.
Rev. argent. microbiol ; 55(1): 91-100, mar. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1441189

RESUMEN

Resumen El abuso y mal uso de los antimicrobianos aceleró la propagación de bacterias resistentes. La asociación entre las infecciones que presentan resistencia a antimicrobianos (RAM) en humanos y el uso de antimicrobianos en la producción agropecuaria es compleja, pero está bien documentada. Proporcionamos una revisión sistemática y metaanálisis sobre la diseminación de la resistencia a antimicrobianos designados como críticamente importantes por la Organización Mundial de la Salud (OMS) en cerdos, aves y bovinos de producción intensiva y extensiva en Argentina. Se buscó información en bases de datos electrónicas (Medline-PubMed, Web of Science, SciELO, Sistema Nacional de Repositorios Digitales de Argentina) y en la literatura gris. Se incluyeron estudios epidemiológicos sobre la RAM en las principales bacterias transmitidas por los alimentos - Salmonella spp., Campylobacter spp., Escherichia coli y Enterococcus spp. - y bacterias causantes de mastitis aisladas de cerdos, pollos y bovinos. Los resultados de este estudio apoyan la hipótesis de que la RAM de las bacterias transmitidas por los alimentos alcanza niveles alarmantes. Los metaanálisis seguidos de análisis por subgrupos mostraron asociación entre la RAM y (a) el animal (p<0,01) para estreptomicina, ampicilina y tetraciclina o (b) el sistema productivo (p<0,05) para estreptomicina, cefotaxima, ampicilina, ácido nalidíxico y tetraciclina. La mayor prevalencia conjunta de multirresistencia se detectó en cerdos (0,47 [0,29; 0,66]) y producción intensiva (0,62 [0,34; 0,83]), mientras que la menor correspondió a bovinos de leche (0,056 [0,003; 0,524]) y producción extensiva (0,107 [0,043; 0,240]). Se observó un vacío de información respecto de los bovinos de feedlot. Es urgente adoptar medidas políticas para coordinar y armonizar la vigilancia de la RAM y regular el uso de antimicrobianos en animales.


Abstract Abuse and misuse of antimicrobial agents has accelerated the spread of antimicrobial-resistant bacteria. The association between antimicrobial-resistant infections in humans and antimicrobial use in agriculture is complex, but well-documented. This study provides a systematic review and meta-analysis of the dissemination of antimicrobial resistance (AMR) to antimicrobials defined as critically important by the WHO, in swine, chicken, and cattle from intensive and extensive production systems in Argentina. We conducted searches in electronic databases (MEDLINE-PubMed, Web of Science, SciELO, the National System of Digital Repositories from Argentina) as well as in the gray literature. Inclusion criteria were epidemiological studies on AMR in the main food-transmitted bacteria, Salmonella spp., Campylobacter spp., Escherichia coli and Enterococcus spp., and mastitis-causing bacteria, isolated from swine, chicken, dairy and beef cattle from Argentina. This study gives evidence for supporting the hypothesis that AMR of common food-transmitted bacteria in Argentina is reaching alarming levels. Meta-analyses followed by subgroup analyses confirmed the association between the prevalence of AMR and (a) animal species (p<0.01) for streptomycin, ampicillin and tetracycline or (b) the animal production system (p<0.05) for streptomycin, cefotaxime, nalidixic acid, ampicillin and tetracycline. Moreover, swine (0.47 [0.29; 0.66]) and intensive production (0.62 [0.34; 0.83]) showed the highest pooled prevalence of multidrug resistance while dairy (0.056 [0.003; 0.524]) and extensive production (0.107 [0.043; 0.240]) showed the lowest. A research gap regarding beef-cattle from feedlot was identified. Finally, there is an urgent need for political measures meant to coordinate and harmonize AMR surveillance and regulate antimicrobial use in animal production.

7.
J Glob Antimicrob Resist ; 32: 108-112, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708770

RESUMEN

OBJECTIVES: The worldwide dissemination of carbapenemase-producing Escherichia coli lineages belonging to high-risk clones poses a challenging public health menace. The aim of this work was to investigate genomic features of a colonizing multidrug-resistant strain of Klebsiella pneumoniae carbapenemase (KPC)-producing E. coli from our institution. METHODS: Whole-genome sequencing was done by Illumina MiSeq-I, and de novo assembly was achieved using SPAdes. Resistome, mobilome, plasmids, virulome, and integrons were analysed using ResFinder, AMRFinder, ISFinder, PlasmidFinder, MOB-suite, VirulenceFinder, and IntegronFinder. Sequence types (STs) were identified with pubMLST and BIGSdb databases. Conjugation assays were also performed. RESULTS: Escherichia coli HA25pEc was isolated from a rectal swab sample taken within the framework of the hospital epidemiological surveillance protocol for detection of carbapenemase-producing Enterobacterales. Escherichia coli HA25pEc corresponded to the first report of ST648 co-harbouring blaKPC-2 and blaCTX-M-15 in Latin America from a colonized patient. It had 19 antibiotic resistance genes (ARGs), including blaKPC-2, located on a Tn4401a isoform. Conjugation assays revealed that blaKPC-2 was not transferred by conjugation to E. coli J53 under our experimental conditions. CONCLUSION: Escherichia coli ST648 has been detected previously in companion and farm animals as well as in hospital- and community-acquired infections worldwide. Although scarcely reported as KPC-producers, our finding in a culture surveillance with several acquired ARGs, including blaCTX-M-15, alerts the potential of this clone for worldwide unnoticed spreading of extreme drug resistance to ß-lactams. These data reinforce the importance of carrying out molecular surveillance to identify reservoirs and warn about the dissemination of new international clones in carbapenemase-bearing patients.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Escherichia coli/genética , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Klebsiella pneumoniae , Genómica , Hospitales
8.
J Glob Antimicrob Resist ; 32: 85-87, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36368600

RESUMEN

OBJECTIVES: The emergence of blaKPC-2 within nosocomial settings has become a major public health crisis worldwide. Our aim was to perform whole-genome sequencing (WGS) of three KPC-producing Gram-negative bacilli (KPC-GNB) strains isolated from a hospitalized patient to identify acquired antimicrobial resistance genes (ARGs). METHODS: WGS was performed using Illumina MiSeq-I, and de novo assembly was achieved using SPAdes. Bioinformatics analysis was done using Resfinder, AMRFinder, ISFinder, plasmidSPAdes, PlasmidFinder, MOB-suite, PLSDB database, and IntegronFinder. Conjugation assays were performed to assess the ability of blaKPC-2 to transfer via a plasmid-related mobilization mechanism. RESULTS: High-risk clone KPC-producing Klebsiella pneumoniae sequence type (ST) 258 (HA3) was colonizing an inpatient who later was infected by KPC-producing Escherichia coli ST730 (HA4) and subsequently by KPC-producing K. pneumoniae ST11 (HA15) during hospitalization. Although belonging to different species, both strains causing infections harbored the same gene configuration for dissemination of blaKPC-2 in related IncM1 plasmids recently found in other KPC-GNB isolated from Hospital Alemán at Ciudad Autónoma de Buenos Aires. Conjugation assays revealed that only pDCVEA4-KPC from E. coli HA4 was successfully transferred with a conjugation frequency of 3.66 × 101. CONCLUSIONS: Interchange of multidrug-resistant K. pneumoniae lineages ST258 replaced by ST11 in the framework of colonization and infection by KPC-GNB of an inpatient from our institution was found. In addition, the transfer of the gene configuration of blaKPC-2 between infecting strains may have occurred in the nosocomial environment, but we cannot rule out that the event took place in vivo, within the patient, during hospitalization.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Humanos , Antibacterianos/farmacología , beta-Lactamasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Pandemias , Pacientes Internos , Infecciones por Klebsiella/epidemiología , Farmacorresistencia Bacteriana , Plásmidos/genética , Klebsiella pneumoniae , Hospitalización , Infección Hospitalaria/epidemiología
9.
Rev Argent Microbiol ; 55(1): 25-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36137889

RESUMEN

Abuse and misuse of antimicrobial agents has accelerated the spread of antimicrobial-resistant bacteria. The association between antimicrobial-resistant infections in humans and antimicrobial use in agriculture is complex, but well-documented. This study provides a systematic review and meta-analysis of the dissemination of antimicrobial resistance (AMR) to antimicrobials defined as critically important by the WHO, in swine, chicken, and cattle from intensive and extensive production systems in Argentina. We conducted searches in electronic databases (MEDLINE-PubMed, Web of Science, SciELO, the National System of Digital Repositories from Argentina) as well as in the gray literature. Inclusion criteria were epidemiological studies on AMR in the main food-transmitted bacteria, Salmonella spp., Campylobacter spp., Escherichia coli and Enterococcus spp., and mastitis-causing bacteria, isolated from swine, chicken, dairy and beef cattle from Argentina. This study gives evidence for supporting the hypothesis that AMR of common food-transmitted bacteria in Argentina is reaching alarming levels. Meta-analyses followed by subgroup analyses confirmed the association between the prevalence of AMR and (a) animal species (p<0.01) for streptomycin, ampicillin and tetracycline or (b) the animal production system (p<0.05) for streptomycin, cefotaxime, nalidixic acid, ampicillin and tetracycline. Moreover, swine (0.47 [0.29; 0.66]) and intensive production (0.62 [0.34; 0.83]) showed the highest pooled prevalence of multidrug resistance while dairy (0.056 [0.003; 0.524]) and extensive production (0.107 [0.043; 0.240]) showed the lowest. A research gap regarding beef-cattle from feedlot was identified. Finally, there is an urgent need for political measures meant to coordinate and harmonize AMR surveillance and regulate antimicrobial use in animal production.


Asunto(s)
Antibacterianos , Antiinfecciosos , Femenino , Animales , Porcinos , Humanos , Bovinos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Argentina , Antiinfecciosos/farmacología , Escherichia coli , Ampicilina , Estreptomicina , Tetraciclinas , Pruebas de Sensibilidad Microbiana
10.
Front Cell Infect Microbiol ; 12: 951049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439236

RESUMEN

According to the World Health Organization, carbapenem-resistant Enterobacteriaceae (CRE) belong to the highest priority group for the development of new antibiotics. Argentina-WHONET data showed that Gram-negative resistance frequencies to imipenem have been increasing since 2010 mostly in two CRE bacteria: Klebsiella pneumoniae and Enterobacter cloacae Complex (ECC). This scenario is mirrored in our hospital. It is known that K. pneumoniae and the ECC coexist in the human body, but little is known about the outcome of these species producing KPC, and colonizing or infecting a patient. We aimed to contribute to the understanding of the rise of the ECC in Argentina, taking as a biological model both a patient colonized with two KPC-producing strains (one Enterobacter hormaechei and one K. pneumoniae) and in vitro competition assays with prevalent KPC-producing ECC (KPC-ECC) versus KPC-producing K. pneumoniae (KPC-Kp) high-risk clones from our institution. A KPC-producing E. hormaechei and later a KPC-Kp strain that colonized a patient shared an identical novel conjugative IncM1 plasmid harboring bla KPC-2. In addition, a total of 19 KPC-ECC and 58 KPC-Kp strains isolated from nosocomial infections revealed that high-risk clones KPC-ECC ST66 and ST78 as well as KPC-Kp ST11 and ST258 were prevalent and selected for competition assays. The competition assays with KCP-ECC ST45, ST66, and ST78 versus KPC-Kp ST11, ST18, and ST258 strains analyzed here showed no statistically significant difference. These assays evidenced that high-risk clones of KPC-ECC and KPC-Kp can coexist in the same hospital environment including the same patient, which explains from an ecological point of view that both species can exchange and share plasmids. These findings offer hints to explain the worldwide rise of KPC-ECC strains based on the ability of some pandemic clones to compete and occupy a certain niche. Taken together, the presence of the same new plasmid and the fitness results that showed that both strains can coexist within the same patient suggest that horizontal genetic transfer of bla KPC-2 within the patient cannot be ruled out. These findings highlight the constant interaction that these two species can keep in the hospital environment, which, in turn, can be related to the spread of KPC.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infección Hospitalaria , Humanos , beta-Lactamasas/genética , Enterobacter cloacae/genética , Infección Hospitalaria/epidemiología , Klebsiella pneumoniae/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Hospitales
11.
J Glob Antimicrob Resist ; 31: 162-164, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36049730

RESUMEN

OBJECTIVES: Enterobacter cloacae complex (ECC) has awakened interest recently because of its increasing resistance to carbapenems codified by several genes all over the globe. Even though there are some sequence types (STs) which represent high-risk clones, there is substantial clonal diversity in the ECC. This work aimed to perform whole-genome sequencing (WGS), genomic analysis, and phylogenetic studies of a Klebsiella pneumoniae carbapenemase (KPC) -producing multidrug-resistant (MDR) ECC isolate from Argentina. METHODS: We analysed the genome of an MDR KPC-producing ECC strain isolated from a urine sample from a patient in a hospital in Argentina. The WGS was done by Illumina MiSeq-I (Illumina, San Diego, CA). The genome was assembled with SPAdes 3.9.0, and annotated with PROKKA, RAST, and Blast. Plasmids were identified with PlasmidFinder. Antibiotic resistance genes were detected using RESfinder, CARD, and Blastn. STs were identified with pubMLST. RESULTS: The strain was identified as Enterobacter hormaechei, an important emerging human pathogen. No ST could be assigned; six of seven alleles of multilocus sequence typing (MLST) were the same as for E. hormaechei ST66, which is a high-risk clone. We found multiple acquired antibiotic resistance genes, including blaKPC-2 in an IncM1 plasmid, and a secretion system VI, which can favour the prevalence of ECC strains while competing with other bacteria. CONCLUSION: Because of its MLST profile being so close to that of E. hormaechei ST66, the acquisition of multiple resistance genes, and the presence of the secretion systems, the potential of this strain for becoming a new high-risk clone cannot be discarded.


Asunto(s)
Enterobacter cloacae , Infecciones por Enterobacteriaceae , Humanos , Enterobacter cloacae/genética , Tipificación de Secuencias Multilocus , Infecciones por Enterobacteriaceae/microbiología , Filogenia , Klebsiella pneumoniae/genética , Antibacterianos/farmacología , Células Clonales
12.
Microorganisms ; 10(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35744620

RESUMEN

Shewanella spp. are Gram-negative bacteria that thrive in aquatic niches and also can cause infectious diseases as opportunistic pathogens. Chromosomal (CI) and mobile integrons (MI) were previously described in some Shewanella isolates. Here, we evaluated the occurrence of integrase genes, the integron systems and their genetic surroundings in the genus. We identified 22 integrase gene types, 17 of which were newly described, showing traits of multiple events of lateral genetic transfer (LGT). Phylogenetic analysis showed that most of them were strain-specific, except for Shewanella algae, where SonIntIA-like may have co-evolved within the host as typical CIs. It is noteworthy that co-existence of up to five different integrase genes within a strain, as well as their wide dissemination to Alteromonadales, Vibrionales, Chromatiales, Oceanospirillales and Enterobacterales was observed. In addition, identification of two novel MIs suggests that continuous LGT events may have occurred resembling the behavior of class 1 integrons. The constant emergence of determinants associated to antimicrobial resistance worldwide, concomitantly with novel MIs in strains capable to harbor several types of integrons, may be an alarming threat for the recruitment of novel antimicrobial resistance gene cassettes in the genus Shewanella, with its consequent contribution towards multidrug resistance in clinical isolates.

13.
Microb Pathog ; 163: 105378, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34982979

RESUMEN

Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::blaCTX-M-2) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.


Asunto(s)
Infecciones por Escherichia coli , Meningitis , Sepsis , Animales , Antibacterianos/farmacología , Bovinos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Integrones , Sepsis/veterinaria
14.
J Glob Antimicrob Resist ; 29: 537-539, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34896335

RESUMEN

OBJECTIVES: Isolation of colistin- and carbapenem-resistant Klebsiella pneumoniae (CCR-Kp) is increasing in hospital settings worldwide, which is related to increased morbidity, mortality and healthcare costs. The aim of this work was to perform whole-genome sequencing (WGS), genomic and phylogenetic analysis, and conjugation assays of an extensively drug-resistant (XDR) CCR-Kp isolate from Argentina. METHODS: WGS of strain KpS26 isolated from a bloodstream infection was performed using Illumina MiSeq-I, and de novo assembly was achieved using SPAdes v.3.11. A maximum likelihood tree was created using MEGA7 based on core genome single nucleotide polymorphisms from whole-genome alignment of K. pneumoniae isolates identified in silico as sequence type 15 (ST15). The resistome, plasmids and integrons were analysed using ResFinder, AMRFinderPlus, ISfinder, plasmidSPAdes, PlasmidFinder and IntegronFinder. Standard conjugation was performed. RESULTS: KpS26 belonged to ST15, which is less common than ST258, ST25 and ST11 that are globally reported as responsible for CCR-Kp outbreaks. Fourteen transferable antimicrobial resistance genes (ARGs), including blaKPC-2 in a novel genetic platform transferable by conjugation, were detected contributing to the XDR phenotype. The amino acid substitution T157P in the protein encoded by the pmrB gene of KpS26, previously reported as being responsible for resistance to colistin in K. pneumoniae lineages globally disseminated, was also identified in this strain. CONCLUSION: The XDR CCR-Kp isolate analysed here shows that ST15 is also disseminating blaKPC-2 in Argentina alongside other ARGs, evidencing that KPC epidemiology continues to be shaped by intricate and assorted ways of lateral gene transfer.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Antibacterianos/metabolismo , Antibacterianos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Colistina/farmacología , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae , Tipificación de Secuencias Multilocus , Filogenia , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
15.
J Virol Methods ; 297: 114272, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454988

RESUMEN

The aim of this study was to set up a simple protocol to concentrate SARS-CoV-2 from sewage, which can be implemented in laboratories with minimal equipment resources. The method avoids the need for extensive purification steps and reduces the concentration of potential inhibitors of RT-qPCR contained in sewage. The concentration method consists of a single step, in which a small volume (40 mL) of sewage sample is incubated with polyaluminum chloride (PAC)(0.00045 N Al3+ final concentration). Virus particles adsorbed to the precipitate are collected by low-speed centrifugation, after which the recovered pellet is resuspended with a saline buffer. PAC-concentrated samples are stable for at least one week at 4 °C. Therefore, they may be sent refrigerated to a diagnosis center for RNA extraction and RT-qPCR for SARS-CoV-2 RNA detection if the lab does not have such capabilities. The PAC concentration method produced an average shift of 4.5-units in quantification cycle (Cq) values compared to non-concentrated samples, indicating a 25-fold increase in detection sensitivity. The lower detection limit corresponded approximately to 100 viral copies per ml. Kappa index indicated substantial agreement between PAC and polyethylene glycol (PEG) precipitation protocols (k = 0.688, CI 0.457-0.919). This low-cost concentration protocol could be useful to aid in the monitoring of community circulation of SARS-CoV-2, especially in low- and middle-income countries, which do not have massive access to support from specialized labs for sewage surveillance.


Asunto(s)
COVID-19 , Aguas del Alcantarillado , Humanos , ARN Viral , SARS-CoV-2 , Aguas Residuales
16.
FEMS Microbiol Lett ; 368(14)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34264334

RESUMEN

Serratia marcescens SCH909 is a multidrug resistant strain isolated in 1988 harboring three class 1 integrons. We wondered if these integrons were retained over time and if there were other antimicrobial resistant determinants contributing to its multidrug resistant profile. Genomic analysis showed a fourth multidrug resistance integron, a Tn7 transposon with dfrA1-sat2-ybeA-ybfA-ybfB-ybgA gene cassettes in the variable region. Insertion sequences were involved in the genesis of novel composite transposons in the L4 subtype plasmid pSCH909, such as Tn6824 carrying an arsenic regulon and two head to head class 1 integrons surrounded by two complete IS1. Remarkably, a novel chromosomal genomic island, SmaR, was identified, closely related to Multiple Antimicrobial Resistance Regions (MARR), usually found in AbaR0-type and AbGRI2-0 from global clones of Acinetobacter baumannii, and in M-type plasmids circulating in Enterobacteriaceae. Maintenance studies showed that the three class 1 integrons were maintained over 1 month without antimicrobial pressure. Since S. marcescens is considered a relevant nosocomial pathogen that can have a wide range of niches - human, plant, animal, soil and inanimate surfaces, our findings support the ability of this species to capture, maintain and spread a broad variety of antimicrobial resistance elements.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Serratia marcescens/efectos de los fármacos , Serratia marcescens/genética , Acinetobacter baumannii/genética , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterobacteriaceae/genética , Genes Bacterianos , Genoma Bacteriano/genética , Islas Genómicas/genética , Humanos , Integrones/genética , Plásmidos/genética , Serratia marcescens/aislamiento & purificación
18.
J Med Microbiol ; 70(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33258754

RESUMEN

Introduction. Stenotrophomonas maltophilia has emerged as one of the most common multi-drug-resistant pathogens isolated from people with cystic fibrosis (CF). However, its adaptation over time to CF lungs has not been fully established.Hypothesis. Sequential isolates of S. maltophilia from a Brazilian adult patient are clonally related and show a pattern of adaptation by loss of virulence factors.Aim. To investigate antimicrobial susceptibility, clonal relatedness, mutation frequency, quorum sensing (QS) and selected virulence factors in sequential S. maltophilia isolates from a Brazilian adult patient attending a CF referral centre in Buenos Aires, Argentina, between May 2014 and May 2018.Methodology. The antibiotic resistance of 11 S. maltophilia isolates recovered from expectorations of an adult female with CF was determined. Clonal relatedness, mutation frequency, QS variants (RpfC-RpfF), QS autoinducer (DSF) and virulence factors were investigated in eight viable isolates.Results. Seven S. maltophilia isolates were resistant to trimethoprim-sulfamethoxazole and five to levofloxacin. All isolates were susceptible to minocycline. Strong, weak and normomutators were detected, with a tendency to decreased mutation rate over time. XbaI PFGE revealed that seven isolates belong to two related clones. All isolates were RpfC-RpfF1 variants and DSF producers. Only two isolates produced weak biofilms, but none displayed swimming or twitching motility. Four isolates showed proteolytic activity and amplified stmPr1 and stmPr2 genes. Only the first three isolates were siderophore producers. Four isolates showed high resistance to oxidative stress, while the last four showed moderate resistance.Conclusion. The present study shows the long-time persistence of two related S. maltophilia clones in an adult female with CF. During the adaptation of the prevalent clones to the CF lungs over time, we identified a gradual loss of virulence factors that could be associated with the high amounts of DSF produced by the evolved isolates. Further, a decreased mutation rate was observed in the late isolates. The role of all these adaptations over time remains to be elucidated from a clinical perspective, probably focusing on the damage they can cause to CF lungs.


Asunto(s)
Fibrosis Quística/complicaciones , Infecciones por Bacterias Gramnegativas/microbiología , Pulmón/microbiología , Stenotrophomonas maltophilia/genética , Adulto , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Femenino , Genotipo , Infecciones por Bacterias Gramnegativas/etiología , Humanos , Masculino , Mutación , Fenotipo , Filogenia , Esputo/microbiología , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/crecimiento & desarrollo , Stenotrophomonas maltophilia/aislamiento & purificación , Adulto Joven
19.
J Glob Antimicrob Resist ; 23: 154-161, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32966912

RESUMEN

OBJECTIVES: Acinetobacter baumannii is an opportunistic nosocomial pathogen that is the main focus of attention in clinical settings owing to its intrinsic ability to persist in the hospital environment and its capacity to acquire determinants of resistance and virulence. Here we present the genomic sequencing, molecular characterisation and genomic comparison of two A. baumannii strains belonging to two different sequence types (STs), one sporadic and one widely distributed in our region. METHODS: Whole-genome sequencing (WGS) of Ab42 and Ab376 was performed using Illumina MiSeq-I and the genomes were assembled with SPAdes. ARG-ANNOT, CARD-RGI, ISfinder, PHAST, PlasmidFinder, plasmidSPAdes and IslandViewer were used to analyse both genomes. RESULTS: Genome analysis revealed that Ab42 belongs to ST172, an uncommon ST, whilst Ab376 belongs to ST25, a widely distributed ST. Molecular characterisation showed the presence of two antibiotic resistance genes in Ab42 and nine in Ab376. No insertion sequences were detected in Ab42, however 22 were detected in Ab376. Moreover, two prophages were found in Ab42 and three in Ab376. In addition, a CRISPR-cas type I-Fb and two plasmids, one of which harboured an AbGRI1-like island, were found in Ab376. CONCLUSIONS: We present WGS analysis of twoA. baumannii strains belonging to two different STs. These findings allowed us to characterise a previously undescribed ST (ST172) and provide new insights to the widely studied ST25.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Genómica , Secuenciación Completa del Genoma
20.
Front Microbiol ; 11: 342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256462

RESUMEN

Acinetobacter baumannii is one of the most important nosocomial pathogens able to rapidly develop extensive drug resistance. Here, we study the role of accessory genome in the success of the globally disseminated clone 1 (GC1) with functional and genomic approaches. Comparative genomics was performed with available GC1 genomes (n = 106) against other A. baumannii high-risk and sporadic clones. Genetic traits related to accessory genome were found common and conserved along time as two novel regions of genome plasticity, and a CRISPR-Cas system acquired before clonal diversification located at the same loci as "sedentary" modules. Although identified within hotspot for recombination, other block of accessory genome was also "sedentary" in lineage 1 of GC1 with signs of microevolution as the AbaR0-type genomic island (GI) identified in A144 and in A155 strains which were maintained one month in independent experiments without antimicrobial pressure. The prophage YMC/09/02/B1251_ABA_BP was found to be "mobile" since, although it was shared by all GC1 genomes, it showed high intrinsic microevolution as well as mobility to different insertion sites. Interestingly, a wide variety of Insertion Sequences (IS), probably acquired by the flow of plasmids related to Rep_3 superfamily was found. These IS showed dissimilar genomic location amongst GC1 genomes presumably associated with promptly niche adaptation. On the other hand, a type VI secretion system and three efflux pumps were subjected to deep processes of genomic loss in A. baumannii but not in GC1. As a whole, these findings suggest that preservation of some genetic modules of accessory genome harbored by strains from different continents in combination with great plasticity of IS and varied flow of plasmids, may be central features of the genomic structure of GC1. Competition of A144 and A155 versus A118 (ST 404/ND) without antimicrobial pressure suggested a higher ability of GC1 to grow over a clone with sporadic behavior which explains, from an ecological perspective, the global achievement of this successful pandemic clone in the hospital habitat. Together, these data suggest an essential role of still unknown properties of "mobile" and "sedentary" accessory genome that is preserved over time under different antibiotic or stress conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...