Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8179-8188, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470354

RESUMEN

We introduce a quantum mechanics/molecular mechanics semiclassical method for studying the solvation process of molecules in water at the nuclear quantum mechanical level with atomistic detail. We employ it in vibrational spectroscopy calculations because this is a tool that is very sensitive to the molecular environment. Specifically, we look at the vibrational spectroscopy of thymidine in liquid water. We find that the C═O frequency red shift and the C═C frequency blue shift, experienced by thymidyne upon solvation, are mainly due to reciprocal polarization effects, that the molecule and the water solvent exert on each other, and nuclear zero-point energy effects. In general, this work provides an accurate and practical tool to study quantum vibrational spectroscopy in solution and condensed phase, incorporating high-level and computationally affordable descriptions of both electronic and nuclear problems.

2.
J Phys Chem Lett ; 14(40): 8940-8947, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37768143

RESUMEN

We report on a vibrational study of the guanine-cytosine dimer tautomers using state-of-the-art quasiclassical trajectory and semiclassical vibrational spectroscopy. The latter includes possible quantum mechanical effects. Through an accurate comparison to the experimental spectra, we are able to shine a light on the hydrogen bond network of one of the main subunits of DNA and put the experimental assignment on a solid footing. Our calculations corroborate the experimental conclusion that the global minimum Watson-and-Crick structure is not detected in the spectra, and there is no evidence of tunnel-effect-based double proton hopping. Our accurate assignment of the spectral features may also serve as a basis for the development of precise force fields to study the guanine-cytosine dimer.


Asunto(s)
Citosina , Guanina , Citosina/química , Guanina/química , Emparejamiento Base , Análisis Espectral , Protones , Enlace de Hidrógeno
3.
J Chem Theory Comput ; 19(18): 6093-6108, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698951

RESUMEN

We propose a numerical technique to accurately simulate the vibrations of organic molecules in the gas phase, when pairs of atoms (or, in general, groups of degrees of freedom) are artificially decoupled, so that their motion is instantaneously decorrelated. The numerical technique we have developed is a symplectic integration algorithm that never requires computation of the force but requires estimates of the Hessian matrix. The theory we present to support our technique postulates a pair-decoupling Hamiltonian function, which parametrically depends on a decoupling coefficient α ∈ [0, 1]. The closer α is to 0, the more decoupled the selected atoms. We test the correctness of our numerical method on small molecular systems, and we apply it to study the vibrational spectroscopic features of salicylic acid at the Density Functional Theory ab initio level on a fitted potential. Our pair-decoupled simulations of salicylic acid show that decoupling hydrogen-bonded atoms do not significantly influence the frequencies of stretching modes, but enhance enormously the out-of-plane wagging and twisting motions of the hydroxyl and carboxyl groups to the point that the carboxyl and hydroxyl groups may overcome high potential energy barriers and change the salicylic acid conformation after a short simulation time. In addition, we found that the acidity of salicylic acid is more influenced by the dynamical couplings of the proton of the carboxylic group with the carbon ring than with the hydroxyl group.

4.
Phys Chem Chem Phys ; 25(33): 22089-22102, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37610422

RESUMEN

Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-cis-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.

5.
J Phys Chem A ; 127(30): 6213-6221, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37477983

RESUMEN

We interface the quasi-classical trajectory approach with an ab initio potential energy surface for water to assign the vibrational spectroscopical features of the OH stretch region of the water octamer cluster, which is considered to be a precursor of ice. An attempt by Li et al. to assign their recent reference experiment involved lower-level calculations based on an ad hoc scaled harmonic approach. Differently from the conclusions of this previous assignment, which invoked the contribution of 5 conformers and a solvated form of the water heptamer in the spectrum, we find out that the spectroscopic features can be related to the 4 conformers of the octamer lying lower in energy.

6.
J Biomol Struct Dyn ; 41(23): 14248-14258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36856120

RESUMEN

It is commonly believed that solvation effects on the vibrational properties of a solute are easily accounted for by simple rules of thumbs, that is, solvating a polar molecule in a polar medium has the only effect of red shifting all its spectroscopical features and, similarly, solvating a polar molecule in a nonpolar medium has the opposite effect. In this work, we use theoretical vibrational spectroscopy at quasi-classical and quantum approximate semiclassical level to gain atomistic insights about solvent-solute interactions for 2'-deoxyguanosine and the G-quadruplex. We employ the quasi-classical trajectory method to include full anharmonicity into our calculated spectra, and then introduce quantum nuclear effects by means of divide-and-conquer semiclassical spectroscopy calculations. Solvation is treated explicitly leading to a good reproducibility of the available experimental data and reliable predictions when an experimental reference is missing.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Vibración , Reproducibilidad de los Resultados , Análisis Espectral , Simulación por Computador , Solventes/química
7.
J Phys Chem C Nanomater Interfaces ; 127(1): 437-449, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36660096

RESUMEN

Understanding NO x chemistry at titania nanoparticle surfaces is important for photocatalytic environmental remediation processes. We focus on this problem and put forward an experimental-computational approach based on vibrational spectroscopy grounds. Temperature-dependent IR experiments of NO x adsorption on shape-engineered nanoparticle (101) anatase surfaces are paired with power spectra obtained from Born-Oppenheimer trajectories. Then, the harmonic versus anharmonic vibrational frequencies of several adsorption scenarios are directly compared with the IR experiments. We conclude that molecules are adsorbed mainly by the N-end side and both the intermolecular interactions between adsorbed molecules and (NO)2 dimer formation are responsible for the main NO adsorption spectroscopic features. We also investigate the spectroscopy and the mechanism of formation on defective anatase surfaces of the long-lived greenhouse gas N2O.

8.
J Phys Chem C Nanomater Interfaces ; 126(29): 12060-12073, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35928238

RESUMEN

The interaction of water molecules and hydroxyl groups with titanium dioxide (TiO2) surfaces is ubiquitous and very important in anatase nanoparticle photocatalytic processes. Infrared spectroscopy, assisted by ab initio calculations of vibrational frequencies, can be a powerful tool to elucidate the mechanisms behind water adsorption. However, a straightforward comparison between measurements and calculations remains a challenging task because of the complexity of the physical phenomena occurring on nanoparticle surfaces. Consequently, severe computational approximations, such as harmonic vibrational ones, are usually employed. In the present work we partially address this complexity issue by overcoming some of the standard approximations used in theoretical simulations and employ the Divide and Conquer Semiclassical Initial Value Representation (DC-SCIVR) molecular dynamics. This method allows to perform simulations of vibrational spectra of large dimensional systems accounting not only for anharmonicities, but also for nuclear quantum effects. We apply this computational method to water and deuterated water adsorbed on the ideal TiO2 anatase(101) surface, contemplating both the molecular and the dissociated adsorption processes. The results highlight not only the presence of an anharmonic shift of the frequencies in agreement with the experiments, but also complex quantum mechanical spectral signatures induced by the coupling of molecular vibrational modes with the surface ones, which are different in the hydrogenated case from the deuterated one. These couplings are further analyzed by exploiting the mode subdivision performed during the divide and conquer procedure.

9.
J Phys Chem Lett ; 13(5): 1350-1355, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35109652

RESUMEN

In this paper, we demonstrate the possibility to perform spectroscopy simulations of solvated biological species taking into consideration quantum effects and explicit solvation. We achieve this goal by interfacing our recently developed divide-and-conquer approach for semiclassical initial value representation molecular dynamics with the polarizable AMOEBABIO18 force field. The method is applied to the study of solvation of the thymidine nucleoside in two different polar solvents, water and N,N-dimethylformamide. Such systems are made of up to 2476 atoms. Experimental evidence concerning the different behavior of thymidine in the two solvents is well reproduced by our study, even though quantitative estimates are hampered by the limited accuracy of the classical force field employed. Overall, this study shows that semiclassically approximate quantum dynamical studies of explicitly solvated biological systems are both computationally affordable and insightful.

10.
Phys Rev Lett ; 128(3): 033001, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35119904

RESUMEN

We investigate glycine microsolvation with water molecules, mimicking astrophysical conditions, in our laboratory by embedding these clusters in helium nanodroplets at 0.37 K. We recorded mass selective infrared spectra in the frequency range 1500-1800 cm^{-1} where two bands centered at 1630 and 1724 cm^{-1} were observed. By comparison with the extensive accompanying calculations, the band at 1630 cm^{-1} was assigned to the COO^{-} asymmetric stretching mode of the zwitter ion and the band at 1724 cm^{-1} was assigned to redshifted C=O stretch within neutral clusters. We show that zwitter ion formation of amino acids readily occurs with only few water molecules available even under extreme conditions.

11.
J Chem Theory Comput ; 18(2): 623-637, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-34995057

RESUMEN

We describe and test on some organic reactions a parallel implementation strategy to compute anharmonic constants, which are employed in semiclassical transition state theory reaction rate calculations. Our software can interface with any quantum chemistry code capable of a single point energy estimate, and it is suitable for both minimum and transition state geometry calculations. After testing the accuracy and comparing the efficiency of our implementation against other software, we use it to estimate the semiclassical transition state theory (SCTST) rate constant of three reactions of increasing dimensionality, known as examples of heavy atom tunneling. We show how our method is improved in efficiency with respect to other existing implementations. In conclusion, our approach allows SCTST rates and heavy atom tunneling at a high level of electronic structure theory (up to CCSD(T)) to be evaluated. This work shows how crucial the possibility to perform high level ab initio rate evaluations can be.

12.
J Chem Phys ; 155(23): 234102, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34937370

RESUMEN

Semiclassical (SC) vibrational spectroscopy is a technique capable of reproducing quantum effects (such as zero-point energies, quantum resonances, and anharmonic overtones) from classical dynamics runs even in the case of very large dimensional systems. In a previous study [Conte et al. J. Chem. Phys. 151, 214107 (2019)], a preliminary sampling based on adiabatic switching has been shown to be able to improve the precision and accuracy of semiclassical results for challenging model potentials and small molecular systems. In this paper, we investigate the possibility to extend the technique to larger (bio)molecular systems whose dynamics must be integrated by means of ab initio "on-the-fly" calculations. After some preliminary tests on small molecules, we obtain the vibrational frequencies of glycine improving on pre-existing SC calculations. Finally, the new approach is applied to 17-atom proline, an amino acid characterized by a strong intramolecular hydrogen bond.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Análisis Espectral , Vibración , Enlace de Hidrógeno
13.
J Chem Theory Comput ; 17(11): 6733-6746, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34705463

RESUMEN

The Hessian matrix of the potential energy of molecular systems is employed not only in geometry optimizations or high-order molecular dynamics integrators but also in many other molecular procedures, such as instantaneous normal mode analysis, force field construction, instanton calculations, and semiclassical initial value representation molecular dynamics, to name a few. Here, we present an algorithm for the calculation of the approximated Hessian in molecular dynamics. The algorithm belongs to the family of unsupervised machine learning methods, and it is based on the neural gas idea, where neurons are molecular configurations whose Hessians are adopted for groups of molecular dynamics configurations with similar geometries. The method is tested on several molecular systems of different dimensionalities both in terms of accuracy and computational time versus calculating the Hessian matrix at each time-step, that is, without any approximation, and other Hessian approximation schemes. Finally, the method is applied to the on-the-fly, full-dimensional simulation of a small synthetic peptide (the 46 atom N-acetyl-l-phenylalaninyl-l-methionine amide) at the level of DFT-B3LYP-D/6-31G* theory, from which the semiclassical vibrational power spectrum is calculated.

14.
J Chem Phys ; 154(9): 094106, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685187

RESUMEN

We present a semiclassically approximate quantum treatment of solvation with the purpose of investigating the accuracy of the Caldeira-Leggett model. We do that by simulating the vibrational features of water solvation by means of two different approaches. One is entirely based on the adoption of an accurate ab initio potential to describe water clusters of increasing dimensionality. The other one consists of a model made of a central water molecule coupled to a high-dimensional Caldeira-Leggett harmonic bath. We demonstrate the role of quantum effects in the detection of water solvation and show that the computationally cheap approach based on the Caldeira-Leggett bath is only partially effective. The main conclusion of the study is that quantum methods associated with high-level potential energy surfaces are necessary to correctly study solvation features, while simplified models, even if attractive owing to their reduced computational cost, can provide some useful insights but are not able to come up with a comprehensive description of the solvation phenomenon.

15.
J Phys Chem C Nanomater Interfaces ; 125(40): 22328-22334, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-35082961

RESUMEN

Crystalline KOH undergoes an antiferroelectric (AFE) proton ordering phase transition at low temperatures, which results in a monoclinic bilayer structure held together by a network of weak hydrogen bonds (HBs). The Curie temperature shifts up when the compound is deuterated, an effect that classical MD is not able to catch. For deeper insights into the transition mechanism, we carry out ab initio MD simulations of KOH and KOD crystals by including quantum effects on the nuclei through Feynman path integrals. The geometric isotope effect and the evolution of the lattice parameters with temperature agree with the experimental data, while the purely classical description is not appropriate. Our results show that deuteration strengthens the HBs in the low-T AFE ordered phase. The transition is characterized by the flipping of OH/OD groups along a bending mode. Above the transition, the system is driven into a dynamical disordered paraelectric phase.

16.
J Chem Phys ; 153(20): 204104, 2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33261493

RESUMEN

A machine learning algorithm for partitioning the nuclear vibrational space into subspaces is introduced. The subdivision criterion is based on Liouville's theorem, i.e., the best preservation of the unitary of the reduced dimensionality Jacobian determinant within each subspace along a probe full-dimensional classical trajectory. The algorithm is based on the idea of evolutionary selection, and it is implemented through a probability graph representation of the vibrational space partitioning. We interface this customized version of genetic algorithms with our divide-and-conquer semiclassical initial value representation method for the calculation of molecular power spectra. First, we benchmark the algorithm by calculating the vibrational power spectra of two model systems, for which the exact subspace division is known. Then, we apply it to the calculation of the power spectrum of methane. Exact calculations and full-dimensional semiclassical spectra of this small molecule are available and provide an additional test of the accuracy of the new approach. Finally, the algorithm is applied to the divide-and-conquer semiclassical calculation of the power spectrum of 12-atom trans-N-methylacetamide.

17.
J Chem Phys ; 153(21): 214117, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33291909

RESUMEN

We present in detail and validate an effective Monte Carlo approach for the calculation of the nuclear vibrational densities via integration of molecular eigenfunctions that we have preliminary employed to calculate the densities of the ground and the excited OH stretch vibrational states in the protonated glycine molecule [Aieta et al., Nat Commun 11, 4348 (2020)]. Here, we first validate and discuss in detail the features of the method on a benchmark water molecule. Then, we apply it to calculate on-the-fly the ab initio anharmonic nuclear densities in the correspondence of the fundamental transitions of NH and CH stretches in protonated glycine. We show how we can gain both qualitative and quantitative physical insight by inspection of different one-nucleus densities and assign a character to spectroscopic absorption peaks using the expansion of vibrational states in terms of harmonic basis functions. The visualization of the nuclear vibrations in a purely quantum picture allows us to observe and quantify the effects of anharmonicity on the molecular structure, also to exploit the effect of IR excitations on specific bonds or functional groups, beyond the harmonic approximation. We also calculate the quantum probability distribution of bond lengths, angles, and dihedrals of the molecule. Notably, we observe how in the case of one type of fundamental NH stretching, the typical harmonic nodal pattern is absent in the anharmonic distribution.

18.
Nat Commun ; 11(1): 4348, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859910

RESUMEN

The interpretation of molecular vibrational spectroscopic signals in terms of atomic motion is essential to understand molecular mechanisms and for chemical characterization. The signals are usually assigned after harmonic normal mode analysis, even if molecular vibrations are known to be anharmonic. Here we obtain the quantum anharmonic vibrational eigenfunctions of the 11-atom protonated glycine molecule and we calculate the density distribution of its nuclei and its geometry parameters, for both the ground and the O-H stretch excited states, using our semiclassical method based on ab initio molecular dynamics trajectories. Our quantum mechanical results describe a molecule elongated and more flexible with respect to what previously thought. More importantly, our method is able to assign each spectral peak in vibrational spectroscopy by showing quantitatively how normal modes involving different functional groups cooperate to originate that spectroscopic signal. The method will possibly allow for a better rationalization of experimental spectroscopy.


Asunto(s)
Glicina/química , Simulación de Dinámica Molecular , Vibración , Estructura Molecular , Teoría Cuántica , Espectrofotometría Infrarroja , Termodinámica
19.
J Chem Theory Comput ; 16(6): 3476-3485, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32374992

RESUMEN

Semiclassical spectroscopy is a practical way to get an accurately approximate quantum description of spectral features starting from ab initio molecular dynamics simulations. The computational bottleneck for the method is represented by the cost of ab initio potential, gradient, and Hessian matrix estimates. This drawback is particularly severe for biological systems due to their unique complexity and large dimensionality. The main goal of this manuscript is to demonstrate that quantum dynamics and spectroscopy, at the level of semiclassical approximation, are doable even for sizable biological systems. To this end, we investigate the possibility of performing semiclassical spectroscopy simulations when ab initio calculations are replaced by computationally cheaper force field evaluations. Both polarizable (AMOEBABIO18) and nonpolarizable (AMBER14SB) force fields are tested. Calculations of some particular vibrational frequencies of four nucleosides, i.e., uridine, thymidine, deoxyguanosine, and adenosine, show that ab initio simulations are accurate and widely applicable. Conversely, simulations based on AMBER14SB are limited to harmonic approximations, but those relying on AMOEBABIO18 yield acceptable semiclassical values if the investigated conformation has been included in the force field parametrization. The main conclusion is that AMOEBABIO18 may provide a viable route to assist semiclassical spectroscopy in the study of large biological molecules for which an ab initio approach is not computationally affordable.


Asunto(s)
Simulación de Dinámica Molecular/normas , Análisis Espectral/métodos , Vibración/uso terapéutico , Humanos
20.
J Chem Phys ; 152(10): 104104, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171221

RESUMEN

The vibrational spectroscopy of adsorbates is becoming an important investigation tool for catalysis and material science. This paper presents a semiclassical molecular dynamics method able to reproduce the vibrational energy levels of systems composed by molecules adsorbed on solid surfaces. Specifically, we extend our divide-and-conquer semiclassical method for power spectra calculations to gas-surface systems and interface it with plane-wave electronic structure codes. The Born-Oppenheimer classical dynamics underlying the semiclassical calculation is full dimensional, and our method includes not only the motion of the adsorbate but also those of the surface and the bulk. The vibrational spectroscopic peaks related to the adsorbate are accounted together with the most coupled phonon modes to obtain spectra amenable to physical interpretations. We apply the method to the adsorption of CO, NO, and H2O on the anatase-TiO2 (101) surface. We compare our semiclassical results with the single-point harmonic estimates and the classical power spectra obtained from the same trajectory employed in the semiclassical calculation. We find that CO and NO anharmonic effects of fundamental vibrations are similarly reproduced by the classical and semiclassical dynamics and that H2O adsorption is fully and properly described in its overtone and combination band relevant components only by the semiclassical approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...