Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36833195

RESUMEN

The GPRO suite is an in-progress bioinformatic project for -omics data analysis. As part of the continued growth of this project, we introduce a client- and server-side solution for comparative transcriptomics and analysis of variants. The client-side consists of two Java applications called "RNASeq" and "VariantSeq" to manage pipelines and workflows based on the most common command line interface tools for RNA-seq and Variant-seq analysis, respectively. As such, "RNASeq" and "VariantSeq" are coupled with a Linux server infrastructure (named GPRO Server-Side) that hosts all dependencies of each application (scripts, databases, and command line interface software). Implementation of the Server-Side requires a Linux operating system, PHP, SQL, Python, bash scripting, and third-party software. The GPRO Server-Side can be installed, via a Docker container, in the user's PC under any operating system or on remote servers, as a cloud solution. "RNASeq" and "VariantSeq" are both available as desktop (RCP compilation) and web (RAP compilation) applications. Each application has two execution modes: a step-by-step mode enables each step of the workflow to be executed independently, and a pipeline mode allows all steps to be run sequentially. "RNASeq" and "VariantSeq" also feature an experimental, online support system called GENIE that consists of a virtual (chatbot) assistant and a pipeline jobs panel coupled with an expert system. The chatbot can troubleshoot issues with the usage of each tool, the pipeline jobs panel provides information about the status of each computational job executed in the GPRO Server-Side, while the expert system provides the user with a potential recommendation to identify or fix failed analyses. Our solution is a ready-to-use topic specific platform that combines the user-friendliness, robustness, and security of desktop software, with the efficiency of cloud/web applications to manage pipelines and workflows based on command line interface software.


Asunto(s)
Programas Informáticos , Interfaz Usuario-Computador , Humanos , Flujo de Trabajo , Biología Computacional , Bases de Datos Factuales
2.
Virus Evol ; 7(1): veab016, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33708415

RESUMEN

Human hepatitis delta virus (HDV) is a unique infectious agent whose genome is composed of a small circular RNA. Recent data, however, have reported the existence of highly divergent HDV-like circRNAs in the transcriptomes of diverse vertebrate and invertebrate species. The HDV-like genomes described in amniotes such as birds and reptiles encode self-cleaving RNA motifs or ribozymes similar to the ones present in the human HDV, whereas no catalytic RNA domains have been reported for the HDV-like genomes detected in metagenomic data from some amphibians, fish, and invertebrates. Herein, we describe the self-cleaving motifs of the HDV-like genomes reported in newts and fish, which belong to the characteristic class of HDV ribozymes. Surprisingly, HDV-like genomes from a toad and a termite show conserved type III hammerhead ribozymes, which belong to an unrelated class of catalytic RNAs characteristic of plant genomes and plant subviral circRNAs, such as some viral satellites and viroids. Sequence analyses revealed the presence of similar HDV-like hammerhead ribozymes encoded in two termite genomes, but also in the genomes of several dipteran species. In vitro transcriptions confirmed the cleaving activity for these motifs, with moderate rates of self-cleavage. These data indicate that all described HDV-like agents contain self-cleaving motifs from either the HDV or the hammerhead class. Autocatalytic ribozymes in HDV-like genomes could be regarded as interchangeable domains and may have arisen from cellular transcriptomes, although we still cannot rule out some other evolutionary explanations.

3.
Cells ; 9(12)2020 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260527

RESUMEN

Circular DNAs, such as most prokaryotic and phage genomes, are a frequent form of nucleic acids, whereas circular RNAs had been regarded as unusual macromolecules until very recently. The first reported RNA circles were the family of small infectious genomes of viroids and circular RNA (circRNA) satellites of plant viruses, some of which contain small self-cleaving RNA motifs, such as the hammerhead (HHR) and hairpin ribozymes. A similar infectious circRNA, the unique human hepatitis delta virus (HDV), is another viral satellite that also encodes self-cleaving motifs called HDV ribozymes. Very recently, different animals have been reported to contain HDV-like circRNAs with typical HDV ribozymes, but also conserved HHR motifs, as we describe here. On the other hand, eukaryotic and prokaryotic genomes encode sequences able to self-excise as circRNAs, like the autocatalytic Group I and II introns, which are widespread genomic mobile elements. In the 1990s, the first circRNAs encoded in a mammalian genome were anecdotally reported, but their abundance and importance have not been unveiled until recently. These gene-encoded circRNAs are produced by events of alternative splicing in a process generally known as backsplicing. However, we have found a second natural pathway of circRNA expression conserved in numerous plant and animal genomes, which efficiently promotes the accumulation of small non-coding RNA circles through the participation of HHRs. Most of these genome-encoded circRNAs with HHRs are the transposition intermediates of a novel family of non-autonomous retrotransposons called retrozymes, with intriguing potential as new forms of gene regulation.


Asunto(s)
ARN Catalítico/genética , ARN Circular/genética , Empalme Alternativo/genética , Animales , Eucariontes/genética , Genoma/genética , Humanos , Plantas/genética , Células Procariotas/metabolismo , ARN Viral/genética , Retroelementos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...