Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Mol Cell Biol ; 37(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28031327

RESUMEN

The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development.


Asunto(s)
Inestabilidad Genómica , Mitosis/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Ciclo Celular , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Homeostasis , Humanos , Interfase , Puntos de Control de la Fase M del Ciclo Celular , Ratones , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato
3.
Exp Hematol ; 44(5): 352-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26860989

RESUMEN

Fanconi anemia (FA) is an inherited disorder of genomic instability associated with high risk of myelodysplasia and acute myeloid leukemia (AML). Young mice deficient in FA core complex genes do not naturally develop cancer, hampering preclinical studies on malignant hematopoiesis in FA. Here we describe that aging Fancc(-/-) mice are prone to genomically unstable AML and other hematologic neoplasms. We report that aneuploidy precedes malignant transformation during Fancc(-/-) hematopoiesis. Our observations reveal that Fancc(-/-) mice develop hematopoietic chromosomal instability followed by leukemia in an age-dependent manner, recapitulating the clinical phenotype of human FA and providing a proof of concept for future development of preclinical models of FA-associated leukemogenesis.


Asunto(s)
Envejecimiento/genética , Inestabilidad Cromosómica , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Leucemia Mieloide/genética , Enfermedad Aguda , Factores de Edad , Aneuploidia , Animales , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación C de la Anemia de Fanconi/deficiencia , Hematopoyesis/genética , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Exp Hematol ; 43(12): 1031-1046.e12, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26366677

RESUMEN

The Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/metabolismo , Hematopoyesis , Interfase , Mitosis , Animales , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Anemia de Fanconi/terapia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Huso Acromático/genética , Huso Acromático/metabolismo , Huso Acromático/patología
5.
Bonekey Rep ; 4: 719, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157579

RESUMEN

Mechanistic understanding of the preferential homing of circulating tumor cells to bone and their perturbation on bone metabolism within the tumor-bone microenvironment remains poorly understood. Alteration in both transforming growth factor ß (TGFß) signaling and sphingolipid metabolism results in the promotion of tumor growth and metastasis. Previous studies using MDA-MB-231 human breast cancer-derived cell lines of variable metastatic potential were queried for changes in sphingolipid metabolism genes to explore correlations between TGFß dependence and bone metastatic behavior. Of these genes, only sphingosine kinase-1 (SPHK1) was identified to be significantly increased following TGFß treatment. Induction of SPHK1 expression correlated to the degree of metastatic capacity in these MDA-MB-231-derived cell lines. We demonstrate that TGFß mediates the regulation of SPHK1 gene expression, protein kinase activity and is critical to MDA-MB-231 cell viability. Furthermore, a bioinformatic analysis of human breast cancer gene expression supports SPHK1 as a hallmark TGFß target gene that also bears the genetic fingerprint of the basal-like/triple-negative breast cancer molecular subtype. These data suggest a potential new signaling axis between TGFß/SphK1 that may have a role in the development, prognosis or the clinical phenotype associated with tumor-bone metastasis.

6.
J Clin Invest ; 123(1): 329-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23221339

RESUMEN

Neurofibromatosis type 1 (NF1) predisposes individuals to the development of juvenile myelomonocytic leukemia (JMML), a fatal myeloproliferative disease (MPD). In genetically engineered murine models, nullizygosity of Nf1, a tumor suppressor gene that encodes a Ras-GTPase-activating protein, results in hyperactivity of Raf/Mek/Erk in hematopoietic stem and progenitor cells (HSPCs). Activated Erk1/2 phosphorylate kinases and transcription factors with myriad mitogenic roles in diverse cell types. However, genetic studies examining Erk1/2's differential and/or combined control of normal and Nf1-deficient myelopoiesis are lacking. Moreover, prior studies relying on chemical Mek/Erk inhibitors have reached conflicting conclusions in normal and Nf1-deficient mice. Here, we show that while single Erk1 or Erk2 disruption did not grossly compromise myelopoiesis, dual Erk1/2 disruption rapidly ablated granulocyte and monocyte production in vivo, diminished progenitor cell number, and prevented HSPC proliferation in vitro. Genetic disruption of Erk1/2 in the context of Nf1 nullizygosity (Mx1Cre(+)Nf1(flox/flox)Erk1(-/-)Erk2(flox/flox)) fully protects against the development of MPD. Collectively, we identified a fundamental requirement for Erk1/2 signaling in normal and Nf1-deficient hematopoiesis, elucidating a critical hematopoietic function for Erk1/2 while genetically validating highly selective Mek/Erk inhibitors in a leukemia that is otherwise resistant to traditional therapy.


Asunto(s)
Leucemia Mielomonocítica Juvenil/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mielopoyesis , Neurofibromatosis 1/metabolismo , Neurofibromina 1 , Animales , Leucemia Mielomonocítica Juvenil/etiología , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patología , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología
7.
Fly (Austin) ; 4(4): 338-43, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20798602

RESUMEN

The expression of toxic viral proteins for the purpose of eliminating distinct populations of cells, while leaving the rest of an organism unaffected, is a valuable method for analyzing development. Using the Gal4-UAS system, we employed the M2(H37A) toxic ion channel of the influenza-A virus to selectively ablate the Drosophila eye-antennal imaginal discs, hemocytes, dorsal vessel and nervous tissue, and comparatively monitored the effects of expressing the apoptosis-promoting protein Reaper in identical cell populations. In this report, we demonstrate the effectiveness of M2(H37A)-mediated ablation as a new means to selectively eliminate cells of interest during Drosophila development.


Asunto(s)
Drosophila/genética , Ingeniería Genética/métodos , Canales Iónicos/genética , Proteínas de la Matriz Viral/genética , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Apoptosis , Drosophila/citología , Drosophila/crecimiento & desarrollo , Ojo/citología , Hemocitos/citología , Hemocitos/metabolismo , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Orthomyxoviridae/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...