Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(16): 26383-26397, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710501

RESUMEN

Here we demonstrate the results of investigating the damage threshold of a LiF crystal after irradiating it with a sequence of coherent femtosecond pulses using the European X-ray Free Electron Laser (EuXFEL). The laser fluxes on the crystal surface varied in the range ∼ 0.015-13 kJ/cm2 per pulse when irradiated with a sequence of 1-100 pulses (tpulse ∼ 20 fs, Eph = 9 keV). Analysis of the surface of the irradiated crystal using different reading systems allowed the damage areas and the topology of the craters formed to be accurately determined. It was found that the ablation threshold decreases with increasing number of X-ray pulses, while the depth of the formed craters increases non-linearly and reaches several hundred nanometers. The obtained results have been compared with data already available in the literature for nano- and picosecond pulses from lasers in the soft X-ray/VUV and optical ranges. A failure model of lithium fluoride is developed and verified with simulation of material damage under single-pulse irradiation. The obtained damage threshold is in reasonably good agreement with the experimentally measured one.

2.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37318367

RESUMEN

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Asunto(s)
Diamante , Rayos Láser , Difracción de Rayos X , Presión , Rayos X
3.
J Synchrotron Radiat ; 30(Pt 4): 822-830, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37159289

RESUMEN

A von Hámos spectrometer has been implemented in the vacuum interaction chamber 1 of the High Energy Density instrument at the European X-ray Free-Electron Laser facility. This setup is dedicated, but not necessarily limited, to X-ray spectroscopy measurements of samples exposed to static compression using a diamond anvil cell. Si and Ge analyser crystals with different orientations are available for this setup, covering the hard X-ray energy regime with a sub-eV energy resolution. The setup was commissioned by measuring various emission spectra of free-standing metal foils and oxide samples in the energy range between 6 and 11 keV as well as low momentum-transfer inelastic X-ray scattering from a diamond sample. Its capabilities to study samples at extreme pressures and temperatures have been demonstrated by measuring the electronic spin-state changes of (Fe0.5Mg0.5)O, contained in a diamond anvil cell and pressurized to 100 GPa, via monitoring the Fe Kß fluorescence with a set of four Si(531) analyser crystals at close to melting temperatures. The efficiency and signal-to-noise ratio of the spectrometer enables valence-to-core emission signals to be studied and single pulse X-ray emission from samples in a diamond anvil cell to be measured, opening new perspectives for spectroscopy in extreme conditions research.


Asunto(s)
Diamante , Electrones , Diamante/química , Radiografía , Rayos X , Rayos Láser
4.
J Synchrotron Radiat ; 30(Pt 1): 208-216, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601939

RESUMEN

The application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra-intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy. A deviation from the parabolic surface in a stack of nanofocusing Be compound refractive lenses (CRLs) was found to affect the resulting intensity distribution within the beam. Comparison of experimental patterns in the far field with patterns calculated for different CRL lens imperfections allowed the overall inhomogeneity in the CRL stack to be estimated. The precise determination of the focal spot size and shape on a sub-micrometer level is essential for a number of high energy density studies requiring either a pin-size backlighting spot or extreme intensities for X-ray heating.

5.
J Synchrotron Radiat ; 28(Pt 5): 1393-1416, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475288

RESUMEN

The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.

6.
J Phys Condens Matter ; 33(27)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33930892

RESUMEN

Synchrotrons and free electron lasers are unique facilities to probe the atomic structure and electronic properties of matter at extreme thermodynamical conditions. In this context, 'matter at extreme pressures and temperatures' was one of the science drivers for the construction of low emittance 4th generation synchrotron sources such as the Extremely Brilliant Source of the European Synchrotron Radiation Facility and hard x-ray free electron lasers, such as the European x-ray free electron laser. These new user facilities combine static high pressure and dynamic shock compression experiments to outstanding high brilliance and submicron beams. This combination not only increases the data-quality but also enlarges tremendously the accessible pressure, temperature and density space. At the same time, the large spectrum of available complementary x-ray diagnostics for static and shock compression studies opens unprecedented insights into the state of matter at extremes. The article aims at highlighting a new horizon of scientific opportunities based on the synergy between extremely brilliant synchrotrons and hard x-ray free electron lasers.

7.
J Phys Chem Lett ; 12(12): 3246-3252, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33764078

RESUMEN

The ultrafast synthesis of ε-Fe3N1+x in a diamond-anvil cell (DAC) from Fe and N2 under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by in situ transformation of α- to γ-iron. Ultimately, the Fe and N2 reacted uniformly throughout the beam path to form Fe3N1.33, as deduced from its established equation of state (EOS). We thus demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can be coupled with the source time structure to enable exploration of the time-dependence of reactions under high-pressure conditions.

8.
J Synchrotron Radiat ; 27(Pt 2): 414-424, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153280

RESUMEN

A portable IR fiber laser-heating system, optimized for X-ray emission spectroscopy (XES) and nuclear inelastic scattering (NIS) spectroscopy with signal collection through the radial opening of diamond anvil cells near 90°with respect to the incident X-ray beam, is presented. The system offers double-sided on-axis heating by a single laser source and zero attenuation of incoming X-rays other than by the high-pressure environment. A description of the system, which has been tested for pressures above 100 GPa and temperatures up to 3000 K, is given. The XES spectra of laser-heated Mg0.67Fe0.33O demonstrate the potential to map the iron spin state in the pressure-temperature range of the Earth's lower mantle, and the NIS spectra of laser-heated FeSi give access to the sound velocity of this candidate of a phase inside the Earth's core. This portable system represents one of the few bridges across the gap between laser heating and high-resolution X-ray spectroscopies with signal collection near 90°.

9.
Rev Sci Instrum ; 90(9): 095107, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31575253

RESUMEN

We present a new diamond anvil cell design, hereafter called mBX110, that combines both the advantages of a membrane and screws to generate high pressure. It enables studies at large-scale facilities for many synchrotron X-ray techniques and has the possibility to remotely control the pressure with the membrane as well as the use of the screws in the laboratory. It is fully compatible with various gas-loading systems as well as high/low temperature environments in the lab or at large scale facilities. The mBX110 possesses an opening angle of 85° suitable for single-crystal diffraction or Brillouin spectroscopy and a large side opening of 110° which can be used for X-ray inelastic techniques, such as X-ray Raman scattering spectroscopy, but also for X-ray emission, X-ray fluorescence, or X-ray absorption. An even larger opening of 150° can be manufactured enabling X-ray imaging tomography. We report data obtained with the mBX110 on different beamlines with single-crystal diffraction of stishovite up to 55 GPa, X-ray powder diffraction of rutile-GeO2 and tungsten to 25 GPa and 280 GPa, respectively, X-Ray Raman spectra of the Si L-edge in silica to 95 GPa, and Fe Kß X-ray emission spectra on a basalt glass to 17 GPa.

10.
J Phys Chem Lett ; 10(7): 1511-1515, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30883126

RESUMEN

Spin-crossover nanomaterials have been actively studied in the past decade for their potential technological applications in sensing, actuating, and information processing devices. Unfortunately, an increasing number of the metallic centers become inactive at reduced sizes, presumably due to surface effects, limiting their switching ability and thus the scope of applications. Here we report on the investigation of "frozen" metallic centers in nanoparticles (2-80 nm size) of the spin-crossover compound Fe(pyrazine)[Ni(CN)4]. Magnetic measurements reveal both high-spin and low-spin residual fractions at atmospheric pressure. A pressure-induced transition of the high-spin residue is observed at around 1.5 GPa by synchrotron Mössbauer spectroscopy. We show that it is equivalent to a downshift of the transition temperature by ca. 400 K due to the size reduction. Unexpectedly, small-angle neutron scattering experiments demonstrate that these high-spin residual centers are not confined to the surface, which contradicts general theoretical considerations.

11.
Nat Commun ; 9(1): 4142, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297769

RESUMEN

A Verwey-type charge-ordering transition in magnetite at 120 K leads to the formation of linear units of three iron ions with one shared electron, called trimerons. The recently-discovered iron pentoxide (Fe4O5) comprising mixed-valent iron cations at octahedral chains, demonstrates another unusual charge-ordering transition at 150 K involving competing formation of iron trimerons and dimerons. Here, we experimentally show that applied pressure can tune the charge-ordering pattern in Fe4O5 and strongly affect the ordering temperature. We report two charge-ordered phases, the first of which may comprise both dimeron and trimeron units, whereas, the second exhibits an overall dimerization involving both the octahedral and trigonal-prismatic chains of iron in the crystal structure. We link the dramatic change in the charge-ordering pattern in the second phase to redistribution of electrons between the octahedral and prismatic iron chains, and propose that the average oxidation state of the iron cations can pre-determine a charge-ordering pattern.

12.
Sci Rep ; 7(1): 16526, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184152

RESUMEN

Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO3 and magnesiosiderite (Mg0.74Fe0.26)CO3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.

13.
Nat Commun ; 8: 15960, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722013

RESUMEN

The presence of carbonates in inclusions in diamonds coming from depths exceeding 670 km are obvious evidence that carbonates exist in the Earth's lower mantle. However, their range of stability, crystal structures and the thermodynamic conditions of the decarbonation processes remain poorly constrained. Here we investigate the behaviour of pure iron carbonate at pressures over 100 GPa and temperatures over 2,500 K using single-crystal X-ray diffraction and Mössbauer spectroscopy in laser-heated diamond anvil cells. On heating to temperatures of the Earth's geotherm at pressures to ∼50 GPa FeCO3 partially dissociates to form various iron oxides. At higher pressures FeCO3 forms two new structures-tetrairon(III) orthocarbonate Fe43+C3O12, and diiron(II) diiron(III) tetracarbonate Fe22+Fe23+C4O13, both phases containing CO4 tetrahedra. Fe4C4O13 is stable at conditions along the entire geotherm to depths of at least 2,500 km, thus demonstrating that self-oxidation-reduction reactions can preserve carbonates in the Earth's lower mantle.

14.
Sci Adv ; 2(7): e1600427, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27453945

RESUMEN

The physical and chemical properties of Earth's mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron-bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data.


Asunto(s)
Aluminio/química , Compuestos de Calcio/química , Hierro/química , Silicatos de Magnesio/química , Óxidos/química , Titanio/química , Compuestos de Calcio/síntesis química , Planeta Tierra , Silicatos de Magnesio/síntesis química , Óxidos/síntesis química , Presión , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...