Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 7(11): e2300458, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37712197

RESUMEN

Metal halide perovskites (MHPs) are semiconductors with promising application in optoelectronic devices, particularly, in solar cell technologies. The chemical and electronic properties of MHPs at the surface and interfaces with adjacent layers dictate charge transfer within stacked devices and ultimately the efficiency of the latter. X-ray photoelectron spectroscopy is a powerful tool to characterize these material properties. However, the X-ray radiation itself can potentially affect the MHP and therefore jeopardize the reliability of the obtained information. In this work, the effect of X-ray irradiation is assessed on Cs0.05 MA0.15 FA0.8 Pb(I0.85 Br0.15 )3  (MA for CH3 NH3 , and FA for CH2 (NH2 )2 ) MHP thin-film samples in a half-cell device. There is a comparison of measurements acquired with synchrotron radiation and a conventional laboratory source for different times. Changes in composition and core levels binding energies are observed in both cases, indicating a modification of the chemical and electronic properties. The results suggest that changes observed over minutes with highly brilliant synchrotron radiation are likely occurring over hours when working with a lab-based source providing a lower photon flux. The possible degradation pathways are discussed, supported by steady-state photoluminescence analysis. The work stresses the importance of beam effect assessment at the beginning of XPS experiments of MHP samples.

2.
Adv Mater ; 27(34): 4958-62, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26198714

RESUMEN

A new, simple bi-phasic dip-coating method is developed. This method is considered as a great improvement of the technique for research, development and production, since expensive, rare, harmful, or time-evolving solutions can now be easily deposited on large surfaces and on a single side from very little amounts of solution.

3.
ACS Appl Mater Interfaces ; 6(19): 17102-10, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25145291

RESUMEN

In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...