Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 11(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34575141

RESUMEN

Epistaxis is one of the most frequent hemorrhages resulting from local or systemic factors. Its management without hospitalization has prompted an interest in locally applied hemostatic agents. Generally, the therapy approaches involve sprays or creams acting as a physical barrier, even used as tampons or gauze. In this study, we have investigated the activity of Emoxilane®, a combination of sodium hyaluronate, silver salt, α-tocopherol acetate and D-panthenol, which is known to be able to separately act in a different biological manner. Our in vitro results, obtained on endothelial and nasal epithelial cells, have shown that the association of these molecules presented a notable antioxidant activity mainly due to the α-tocopherol and D-panthenol and a significant antimicrobial role thanks to the silver compound. Moreover, remarkable hemostatic activity was found by evaluating plasmin inhibition attributable to the sodium hyaluronate. Interestingly, on human plasma, we have confirmed that Emoxilane® strongly induced the increase of thrombin levels. These data suggest that the use of this association could represent an appealing pharmacological approach to actively induce hemostasis during epistaxis. Our future perspective will aim to the creation of a formulation for an easy topical application in the nose which is able to contrast the bleeding.

2.
Pharmaceutics ; 12(2)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31972993

RESUMEN

Core-shell beads loaded with betamethasone were developed using co-axial prilling as production technique and pectin plus alginate as polymeric carriers. During this study, many operative conditions were intensively investigated to find the best ones necessary to produce uniform core-shell particle systems in a reproducible way. Particularly, feed solutions' composition, polymers mass ratios and the effect of the main process parameters on particles production, micromeritics, inner structure, drug loading and drug-release/swelling profiles in simulated biological fluids were studied. The optimized core-shell formulation F5 produced with a pectin core concentration of 4.0% w/v and an alginate shell concentration of 2.0% w/v (2:1 core:shell ratio) acted as a sustained drug delivery system. It was able to reduce the early release of the drug in the upper part of the gastro-intestinal tract for the presence of the zinc-alginate gastro-resistant outer layer and to specifically deliver it in the colon, thanks to the selectivity of amidated low methoxy pectin core for this district. Therefore, these particles may be proposed as colon targeted drug delivery systems useful for inflammatory bowel disease (IBD) therapy.

3.
Int J Biol Macromol ; 120(Pt B): 2303-2312, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30171948

RESUMEN

A gastro-retentive delivery system loaded with piroxicam with a bimodal release profile in gastrointestinal-tract was developed. Piroxicam is characterized by high oral absorption, long half-life, but its elimination is impaired in elderly patients. To overcome fluctuations in plasma levels, floating gastro-retentive gel-beads with sustained release properties were manufactured using prilling. Beads matrix was designed as a hollow/multipolymeric system based on alginate, ALM-pectin and hydroxypropilmethylcellulose. This research studied variables able to affect particles micromeritics, hollow inner structure, floating properties and drug-release profiles in gastro-intestinal tract. The gastro-retentive formulation (F4) acted as a floating-system able to provide the desired bimodal drug-release pattern controlling and delaying in vitro piroxicam release. The in vivo anti-inflammatory activity of the floating beads resulted prolonged up to 48 h, compared to standard piroxicam. This formulation may be proposed to treat chronic inflammatory-diseases in elderly patients, needing a rapid onset of drug action followed by a maintenance dose.


Asunto(s)
Alginatos/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Portadores de Fármacos/química , Mucosa Gástrica/metabolismo , Piroxicam/química , Piroxicam/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Preparaciones de Acción Retardada , Liberación de Fármacos , Masculino , Piroxicam/farmacología , Ratas , Ratas Wistar , Viscosidad
4.
Int J Biol Macromol ; 101: 100-106, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28322959

RESUMEN

Gelling solution parameters are some of the most important variables in ionotropic gelation and consequently influence the technological characteristics of the product. To date, only a few studies have focused on the simultaneous use of multiple cations as gelling agents. With the aim to deeply explore this possibility, in this research we investigated the effect of two divalent cations (Ca2+ and Zn2+) on alginate beads formation and properties. Alginate beads containing prednisolone (P) as model drug were prepared by prilling technique. The main critical variables of the ionotropic gelation process i.e. composition of the aqueous feed solutions (sodium alginate and prednisolone concentration) and cross-linking conditions (Ca2+, Zn2+ or Ca2++Zn2+), were studied. The obtained beads were characterized and their in vitro release performances were assessed in conditions simulating the gastrointestinal environment. Results evidenced a synergistic effect of the two cations, affecting positively both the encapsulation efficiency and the ability of the alginate polymeric matrix to control the drug release. A Ca2+/Zn2+ ratio of 4:1, in fact, exploited the Ca2+ ability of establish quicker electrostatic interactions with guluronic groups of alginate and the Zn2+ ability to establish covalent-like bonds with carboxylate groups of both guluronic and mannuronic moieties of alginate.


Asunto(s)
Alginatos/química , Cationes Bivalentes/química , Portadores de Fármacos/química , Microesferas , Liberación de Fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Cinética
5.
PLoS One ; 11(7): e0160266, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472446

RESUMEN

In this work, a platform of alginate beads loaded with Prednisolone in hypromellose/gellan gum capsules (F6/Cps) able to delay steroidal anti-inflammatory drug (SAID) release as needed for chronotherapy of rheumatoid arthritis is proposed. Rheumatoid arthritis, showing a worsening in symptoms in the morning upon waking, is a pathology that can benefit from chronotherapy. With the aim to maximize prednisolone therapeutic action allowing the right timing of glucocorticoid therapy, different engineered microparticles (gel-beads) were manufactured using prilling (laminar jet break-up) as micro-encapsulation technique and Zn-alginate as gastroresistant carrier. Starting from various feed solutions and process parameters, the effect of the variables on particles size, morphology, solid state properties and drug release was studied. The optimization of operative and prilling/ionotropic gelation variables led to microspheres with almost spherical shape and a narrow dimensional range. The feed solution with the highest alginate (2.5% w/v) amount and drug/polymer ratio (1:5 w/w) gave rise to the highest encapsulation efficiency (78.5%) as in F6 formulation. As to drug release, F6 exhibited an interesting dissolution profile, releasing about 24% of the drug in simulated gastric fluid followed by a more sustained profile in simulated intestinal fluid. #F6, acting as a gastro-resistant and delayed release formulation, was selected for in vivo studies on male Wistar rats by means of a carrageenan-induced oedema model. Finally, this efficacious formulation was used as core material for the development of a final dosage form: F6/Cps allowed to significantly reduce prednisolone release in simulated gastric fluid (12.6%) and delayed drug release up to about 390 minutes.


Asunto(s)
Alginatos/química , Esquema de Medicación , Prednisolona/administración & dosificación , Animales , Rastreo Diferencial de Calorimetría , Formas de Dosificación , Portadores de Fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Masculino , Microscopía Electrónica de Rastreo , Prednisolona/farmacocinética , Ratas , Ratas Wistar , Espectrofotometría Infrarroja
6.
Drug Dev Ind Pharm ; 42(12): 2063-2069, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27237337

RESUMEN

CONTEXT: Ketoprofen lysinate (KL) is one of the most widely used non-steroidal anti-inflammatory drugs in the symptomatic treatment of some chronic inflammatory diseases. Compared to ketoprofen, KL shows better pharmacokinetics and tolerability. However, due to its short half-life of 1-2 h, a multiple dose regimen is required for oral administration. Thus, the present work deals with its encapsulation in a hydrogel-based system by prilling in order to prolong its activity. OBJECTIVE: In this paper, we propose alginate and pectin as carriers and release tailoring agent for the development of hydrogel-based beads for KL retarded and sustained release. MATERIALS AND METHODS: Beads were produced by a Nisco Encapsulator® using alginate or pectin. Operative variables were optimized to produce beads with desired morphology and size. Solid state properties were analyzed by SEM and DSC. Drug release performance was studied by Pharmacopeia pH-change assay to simulate gastrointestinal environment. RESULTS AND DISCUSSION: Prilling technique was successfully used to encapsulate high soluble drugs as KL in polysaccharides-based hydrogels. Pectin proved to be a proper polymer able to encapsulate ketoprofen lysine salt. Formulation (F8) showed good morphological properties and size, high drug content (15.6%) and encapsulation efficiency (93.5%) and promising drug release profiles. Hosting F8 in an acid-resistant capsule (DR®caps) a delivery platform has been developed to control KL release in a delayed (90 min lag time) and prolonged way (270 min complete release). CONCLUSION: The platform may be proposed as potentially useful in the oral administration of NSAIDs in chronic inflammatory diseases affected by circadian rhythm.

7.
J Pharm Sci ; 104(10): 3451-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26088065

RESUMEN

For the treatment of inflammatory-based diseases affected by circadian rhythms, the development of once-daily dosage forms is required to target early morning symptoms. In this study, Zn-alginate beads containing ketoprofen (K) were developed by a tandem technique prilling/ionotropic gelation. The effect of main critical variables on particles micromeritics, inner structure as well as on drug loading and in vitro drug release was studied. The in vivo anti-inflammatory efficacy was evaluated using a modified protocol of carrageenan-induced edema in rat paw administering beads to rats by oral gavage at 0, 3, or 5 h before edema induction. Good drug loading and desired particle size and morphology were obtained for the optimized formulation F20. In vitro dissolution studies showed that F20 had a gastroresistant behavior and delayed release of the drug in simulated intestinal fluid. The in vitro delayed release pattern was clearly reflected in the prolonged anti-inflammatory effect in vivo of F20, compared to pure ketoprofen; F20, administered 3 h before edema induction, showed a significant anti-inflammatory activity, reducing maximum paw volume in response to carrageenan injection, whereas no response was observed for ketoprofen. The designed beads appear a promising platform suitable for a delayed release of anti-inflammatory drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3451-3458, 2015.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Cetoprofeno/administración & dosificación , Cetoprofeno/farmacología , Administración Oral , Alginatos , Animales , Rastreo Diferencial de Calorimetría , Carragenina , Química Farmacéutica , Preparaciones de Acción Retardada , Diseño de Fármacos , Edema/inducido químicamente , Edema/tratamiento farmacológico , Ácido Glucurónico , Ácidos Hexurónicos , Masculino , Tamaño de la Partícula , Ratas , Ratas Wistar , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...