Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e24491, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318042

RESUMEN

In this paper, we outline the development of stoichiometric chalcostibite, CuSbS2 thin films, from a single bath by pulse electrodeposition for its application as a photocathode in photoelectrochemical cells (PEC). The Cu/Sb precursor molar ratio of the deposition bath was varied to obtain stoichiometric CuSbS2 thin films. The optimized deposition and dissolution potentials were -0.72 V and -0.1 V vs saturated calomel electrode, respectively. The formation of CuSbS2 was analyzed using different characterization tools. X-ray diffraction and Raman results showed the formation of the pure chalcostibite phase from a precursor bath with molar ratio Cu/Sb = 0.41. The heterostructure CuSbS2/CdS/Pt was tested as a photocathode in the PEC. The energy positions of the conduction and valence bands were estimated from the Mott Schottky plots. The conduction band and valence band offset of CuSbS2/CdS heterojunction were 0.1 eV and 1.04 eV, respectively. The electric field created in the junction reduced the recombination of the electron/hole pairs and improved charge transfer in the interface. The heterostructure CuSbS2/CdS/Pt demonstrated an improved photocurrent density of 3.4 mA cm-2 at 0 V vs reversible hydrogen electrode. The PEC efficiency obtained from the CuSbS2/CdS heterojunction was 0.56 %. Therefore, we demonstrated the feasibility of an inexpensive technique like electrodeposition for the development of an efficient earth-abundant photocathode.

2.
Materials (Basel) ; 16(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37176370

RESUMEN

In this study, low-temperature synthesis of a Nb2SnC non-MAX phase was carried out via solid-state reaction, and a novel approach was introduced to synthesize 2D Nb2CTx MXenes through selective etching of Sn from Nb2SnC using mild phosphoric acid. Our work provides valuable insights into the field of 2D MXenes and their potential for energy storage applications. Various techniques, including XRD, SEM, TEM, EDS, and XPS, were used to characterize the samples and determine their crystal structures and chemical compositions. SEM images revealed a two-dimensional layered structure of Nb2CTx, which is consistent with the expected morphology of MXenes. The synthesized Nb2CTx showed a high specific capacitance of 502.97 Fg-1 at 1 Ag-1, demonstrating its potential for high-performance energy storage applications. The approach used in this study is low-cost and could lead to the development of new energy storage materials. Our study contributes to the field by introducing a unique method to synthesize 2D Nb2CTx MXenes and highlights its potential for practical applications.

3.
J Biotechnol ; 332: 29-53, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33771626

RESUMEN

Dye-sensitized solar cells have been of great interest in photovoltaic technology due to their capacity to convert energy at a low cost. The use of natural pigments means replacing expensive chemical synthesis processes by easily extractable pigments that are non-toxic and environmentally friendly. Although most of the pigments used for this purpose are obtained from higher plants, there are potential alternative sources that have been underexploited and have shown encouraging results, since pigments can also be obtained from organisms like bacteria, cyanobacteria, microalgae, yeast, and molds, which have the potential of being cultivated in bioreactors or optimized by biotechnological processes. The aforementioned organisms are sources of diverse sensitizers like photosynthetic pigments, accessory pigments, and secondary metabolites such as chlorophylls, bacteriochlorophylls, carotenoids, and phycobiliproteins. Moreover, retinal proteins, photosystems, and reaction centers from these organisms can also act as sensitizers. In this review, the use of natural sensitizers extracted from algae, cyanobacteria, bacteria, archaea, and fungi is assessed. The reported photoconversion efficiencies vary from 0.001 % to 4.6 % for sensitizers extracted from algae and microalgae, 0.004 to 1.67 % for bacterial sensitizers, 0.07-0.23 % for cyanobacteria, 0.09 to 0.049 % for archaea and 0.26-2.3 % for pigments from fungi.


Asunto(s)
Archaea , Cianobacterias , Carotenoides , Hongos , Plantas
4.
ACS Appl Mater Interfaces ; 10(4): 3571-3580, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29318870

RESUMEN

We for the first time report the incorporation of cobalt into a mesoporous TiO2 electrode for application in perovskite solar cells (PSCs). The Co-doped PSC exhibits excellent optoelectronic properties; we explain the improvements by passivation of electronic trap or sub-band-gap states arising due to the oxygen vacancies in pristine TiO2, enabling faster electron transport and collection. A simple postannealing treatment is used to prepare the cobalt-doped mesoporous electrode; UV-visible spectroscopy, X-ray photoemission spectroscopy, space charge-limited current, photoluminescence, and electrochemical impedance measurements confirm the incorporation of cobalt, enhanced conductivity, and the passivation effect induced in the TiO2. An optimized doping concentration of 0.3 mol % results in the maximum power conversion efficiency of 18.16%, 21.7% higher than that of a similar cell with an undoped TiO2 electrode. Also, the device shows negligible hysteresis and higher stability, retaining 80.54% of the initial efficiency after 200 h.

5.
Phys Chem Chem Phys ; 17(28): 18590-9, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26113151

RESUMEN

A multilayered semiconductor sensitizer structure composed of three differently sized CdSe quantum rods (QRs), labeled as Q530, Q575, Q590, were prepared and deposited on the surface of mesoporous TiO2 nanoparticles by electrophoretic deposition (EPD) for photovoltaic applications. By varying the arrangement of layers as well as the time of EPD, the photoconversion efficiency was improved from 2.0% with the single layer of CdSe QRs (TiO2/Q590/ZnS) to 2.9% for multilayers (TiO2/Q590Q575/ZnS). The optimal EPD time was shorter for the multilayered structures. The effect of CdS quantum dots (QDs) deposited by successive ionic layer adsorption and reaction (SILAR) was also investigated. The addition of CdS QDs resulted in the enhancement of efficiency to 4.1% for the configuration (TiO2/CdS/Q590Q575/ZnS), due to increased photocurrent and photovoltage. Based on detailed structural, optical, and photoelectrical studies, the increased photocurrent is attributed to broadened light absorption while the increased voltage is due to a shift in the relevant energy levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...