Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 17(7): e2100564, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35316566

RESUMEN

Cas9 nucleases have become the most versatile tool for genome editing projects in a broad range of organisms. The recombinant production of Cas9 nuclease is desirable for in vitro activity assays or the preparation of ribonucleoproteins (RNPs) for DNA-free genome editing approaches. For the rapid production of Cas9, we explored the use of a recently established cell-free lysate from tobacco (Nicotiana tabacum L.) BY-2 cells. Using this system, the 130-kDa Cas9 nuclease from Staphylococcus aureus (SaCas9) was produced and subsequently purified via affinity chromatography. The purified apoenzyme was supplemented with 10 different sgRNAs, and the nuclease activity was confirmed by the linearization of plasmid DNA containing cloned DNA target sequences.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Endonucleasas/genética , Edición Génica/métodos , Ribonucleoproteínas/genética , Staphylococcus aureus , Nicotiana/genética , Nicotiana/metabolismo
2.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34182608

RESUMEN

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Humanos , Pandemias/prevención & control , SARS-CoV-2
3.
Transgenic Res ; 30(4): 499-528, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33825100

RESUMEN

The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas/genética , Frutas/genética , Edición Génica , Genoma de Planta , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , Marcación de Gen
4.
Plant Cell Rep ; 40(6): 915-930, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33515309

RESUMEN

The conventional breeding of fruits and fruit trees has led to the improvement of consumer-driven traits such as fruit size, yield, nutritional properties, aroma and taste, as well as the introduction of agronomic properties such as disease resistance. However, even with the assistance of modern molecular approaches such as marker-assisted selection, the improvement of fruit varieties by conventional breeding takes considerable time and effort. The advent of genetic engineering led to the rapid development of new varieties by allowing the direct introduction of genes into elite lines. In this review article, we discuss three such case studies: the Arctic® apple, the Pinkglow pineapple and the SunUp/Rainbow papaya. We consider these events in the light of global regulations for the commercialization of genetically modified organisms (GMOs), focusing on the differences between product-related systems (the USA/Canada comparative safety assessment) and process-related systems (the EU "precautionary principle" model). More recently, genome editing has provided an efficient way to introduce precise mutations in plants, including fruits and fruit trees, replicating conventional breeding outcomes without the extensive backcrossing and selection typically necessary to introgress new traits. Some jurisdictions have reacted by amending the regulations governing GMOs to provide exemptions for crops that would be indistinguishable from conventional varieties based on product comparison. This has revealed the deficiencies of current process-related regulatory frameworks, particularly in the EU, which now stands against the rest of the world as a unique example of inflexible and dogmatic governance based on political expediency and activism rather than rigorous scientific evidence.


Asunto(s)
Productos Agrícolas/genética , Frutas/genética , Edición Génica/legislación & jurisprudencia , Fitomejoramiento/legislación & jurisprudencia , Fitomejoramiento/métodos , Ananas/genética , Canadá , Carica/genética , Europa (Continente) , Edición Génica/métodos , Malus/genética , Mutagénesis , Plantas Modificadas Genéticamente/genética , Poliploidía , Estados Unidos
5.
Biotechnol Bioeng ; 116(10): 2526-2539, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31209856

RESUMEN

By the end of 2017, the Food and Drug Administration had approved a total of 77 therapeutic monoclonal antibodies (mAbs), most of which are still manufactured today. Furthermore, global sales of mAbs topped $90 billion in 2017 and are projected to reach $125 billion by 2020. The mAbs approved for human therapy are mostly produced using Chinese hamster ovary (CHO) cells, which require expensive infrastructure for production and purification. Molecular pharming in plants is an alternative approach with the benefits of lower costs, greater scalability, and intrinsic safety. For some platforms, the production cycle is also much quicker. But do these advantages really stack up in economic terms? Earlier techno-economic evaluations have focused on specific platforms or processes and have used different methods, making direct comparisons challenging and the overall benefits of molecular pharming difficult to gauge. Here, we present a simplified techno-economic model for the manufacturing of mAbs, which can be applied to any production platform by focusing on the most important factors that determine the efficiency and cost of bulk drug manufacturing. This model develops economic concepts to identify variables that can be used to achieve cost savings by simultaneously modeling the dynamic costs of upstream production at different scales and the corresponding downstream processing costs for different manufacturing modes (sequential, serial, and continuous). The use of simplified models will help to achieve meaningful comparisons between diverse manufacturing technologies.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/aislamiento & purificación , Biotecnología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Células CHO , Cricetulus , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...