Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 593: 120097, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33217547

RESUMEN

Polymeric platforms obtained by three-dimensional (3D) printing are becoming increasingly important as multifunctional therapeutic systems for bone treatment applications. In particularly, researchers aim to control bacterial biofilm on these 3D-platforms and enhance re-growing bone tissue, at the same time. This study aimed to fabricate a 3D-printed polylactic acid platform loaded with hydroxyapatite (HA), iron oxide nanoparticles (IONPs) and an antibiotic (minocycline) with tuneable properties and multistimuli response. IONPs were produced by a facile chemical co-precipitation method showing an average diameter between 11 and 15 nm and a superparamagnetic behaviour which was preserved when loaded into the 3D-platforms. The presence of two types of nanoparticles (IONPs and HA) modify the nanomorphological/nanotopographical feature of the 3D-platforms justifying their adequate bioactivity profile and in vitro cellular effects on immortalized and primary osteoblasts, including cytocompatibility and increased osteogenesis-related gene expression (RUNX2, BGLAP and SPP1). Disk diffusion assays and SEM analysis confirmed the effect of the 3D-platforms loaded with minocycline against Staphylococcus aureus. Altogether results showed that fabricated 3D-platforms combined the exact therapeutic antibiofilm dose of the antibiotic against S. aureus, with the enhanced osteogenic stimulation of the HA and IONPs nanoparticles which is a disruptive approach for bone targeting applications.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Antibacterianos/farmacología , Regeneración Ósea , Huesos , Osteogénesis , Impresión Tridimensional , Staphylococcus aureus , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...