Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 10(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35208737

RESUMEN

The isolation of filamentous fungal strains from remote habitats with extreme climatic conditions has led to the discovery of a series of enzymes with attractive properties that can be useful in various industrial applications. Among these, cold-adapted enzymes from fungi with psychrotrophic lifestyles are valuable agents in industrial processes aiming towards energy reduction. Out of eight strains isolated from soil of the paramo highlands of Ecuador, three were selected for further experimentation and identified as Cladosporium michoacanense, Cladosporium sp. (cladosporioides complex), and Didymella sp., this last being reported for the first time in this area. The secretion of seven enzymes, namely, endoglucanase, exoglucanase, ß-D-glucosidase, endo-1,4-ß-xylanase, ß-D-xylosidase, acid, and alkaline phosphatases, were analyzed under agitation and static conditions optimized for the growth period and incubation temperature. Cladosporium strains under agitation as well as incubation for 72 h mostly showed the substantial activation for endoglucanase reaching up to 4563 mU/mL and xylanase up to 3036 mU/mL. Meanwhile, other enzymatic levels varied enormously depending on growth and temperature. Didymella sp. showed the most robust activation at 8 °C for endoglucanase, ß-D-glucosidase, and xylanase, indicating an interesting profile for applications such as bioremediation and wastewater treatment processes under cold climatic conditions.

2.
Int J Biol Macromol ; 186: 909-918, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274400

RESUMEN

A purified exo-polygalacturonase of Neosartorya glabra (EplNg) was successfully characterized. EplNg native presented 68.2 kDa, with 32% carbohydrate content. The deglycosylated form showed 46.3 kDa and isoelectric point of 5.4. The identity of EplNg was confirmed as an exo-polygalacturonase class I (EC 3.2.1.67) using mass spectrometry and Western-Blotting. Capillary electrophoresis indicated that only galacturonic acid was released by the action of EplNg on sodium polypectate, confirming an exoenzyme character. The structural model confers that EplNg has a core formed by twisted parallel ß-sheets structure. Among twelve putative cysteines, ten were predicted to form disulfide bridges. The catalytic triad predicted is composed of Asp223, Asp245, and Asp246 aligned along with a distance in 4-5 Å, suggesting that EplNg probably does not perform the standard inverting catalytic mechanism described for the GH28 family. EplNg was active from 30 to 90 °C, with maximum activity at 65 °C, pH 5.0. The Km and Vmax determined using sodium polypectate were 6.9 mg·mL-1 and Vmax 690 µmol·min-1.mg-1, respectively. EplNg was active and stable over a wide range of pH values and temperatures, confirming the interesting properties EplNg and provide a basis for the development of the enzyme in different biotechnological processes.


Asunto(s)
Aspergillus/enzimología , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Catálisis , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Glicósido Hidrolasas/química , Glicósido Hidrolasas/aislamiento & purificación , Ácidos Hexurónicos/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Pectinas/metabolismo , Conformación Proteica , Estabilidad Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Temperatura
3.
Appl Biochem Biotechnol ; 191(3): 1111-1126, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31960367

RESUMEN

The use of non-potable water (such as seawater) is an attractive alternative for water intensive processes such as biomass pretreatment and saccharification steps in the production of biochemicals and biofuels. Identification and application of halotolerant enzymes compatible with high-salt conditions may reduce the energy needed for non-potable water treatment and decrease waste treatment costs. Here we present the biochemical properties of a halotolerant endo-1,4-ß-xylanase produced by Aspergillus clavatus in submerged fermentation, using paper sludge (XPS) and sugarcane bagasse (XSCB), and its potential application in the hydrolysis of agroindustrial residues. The peptide mass fingerprint and amino acid sequencing of the XPS and XSCB enzymes showed primary structure similarities with an endo-1,4-ß-xylanase from Aspergillus clavatus (XYNA_ASPCL). Both enzyme preparations presented good thermal stability at 50 °C and were stable over a wide range of pH and Vmax up to 2450 U/mg for XPS. XPS and XSCB were almost fully stable even after 24 h of incubation in the presence of up to 3 M NaCl, and their activity were not affected by 500 mM NaCl. Both enzyme preparations were capable of hydrolyzing paper sludge and sugarcane bagasse to release reducing sugars. These characteristics make this xylanase attractive to be used in the hydrolysis of biomass, particularly with brackish water or seawater.


Asunto(s)
Aspergillus/enzimología , Celulosa/química , Endo-1,4-beta Xilanasas/metabolismo , Aguas del Alcantarillado , Biomasa , Carbohidratos/química , Celulasa/metabolismo , Celulosa/clasificación , Concentración de Iones de Hidrógeno , Hidrólisis , Microbiología Industrial , Cinética , Papel , Péptidos/química , Filogenia , Conformación Proteica , Saccharum , Temperatura , Contaminantes Químicos del Agua/análisis , Contaminación del Agua , Purificación del Agua/métodos
4.
Folia Microbiol (Praha) ; 65(1): 173-184, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31222689

RESUMEN

Today, many microbial amylases are available commercially and they have almost completely replaced chemical hydrolysis in several industry processes. Amylases from microorganisms have a broad spectrum of industrial applications as they are more stable than amylases obtained from plants and animals. The objective of this work was to use potato baits in an Atlantic Forest remnant located in Ribeirão Preto, São Paulo, Brazil, in order to obtain amylase-producing fungi with potential for biotechnological application. In addition, the culture conditions for the fungal strain that presented higher production of glucoamylase were standardized using industrial wastes. For this, 6 PET bottles containing potatoes as baits were scattered at different points in an Atlantic forest remnant. After 6 days, the samples were collected, and the filamentous fungi were isolated in Petri dishes. Fungi screening was carried out in Khanna liquid medium with 1% starch Reagen®, at 30 °C, pH 6.0, under static conditions for 4 days. Proteins and glucoamylase activity were determined by Bradford and 3,5-dinitrosalicylic acid (DNS), respectively. Among all isolated fungi, A. carbonarius showed the highest glucoamylase production. Its best cultivation conditions were observed in Khanna medium, 4 days, at 30 °C, pH 6.0, under static condition with 0.1% yeast extract and 1% starch Reagen®. Wheat and brewing residues were also used as inducers for large quantities of glucoamylase production. A. carbonarius showed to be a good alternative for the wheat and brewing waste destinations in order to obtain high added value products.


Asunto(s)
Aspergillus/enzimología , Aspergillus/aislamiento & purificación , Glucano 1,4-alfa-Glucosidasa/metabolismo , Triticum/metabolismo , Bioprospección , Brasil , Bosques , Hidrólisis , Almidón/metabolismo , Clima Tropical
5.
Molecules ; 22(9)2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28869529

RESUMEN

Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr), at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold) in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea), cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ratio) than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of their application at large scale processes.


Asunto(s)
Enzimas Inmovilizadas/química , Hypocrea/química , Lipasa/química , Reactivos de Enlaces Cruzados/química , Bromuro de Cianógeno/química , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Activación Enzimática , Estabilidad de Enzimas , Glutaral/química , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Aceites/química , Desnaturalización Proteica , Estabilidad Proteica , Sefarosa/química , Solventes , Estereoisomerismo , Especificidad por Sustrato , Temperatura
6.
Int J Biol Macromol ; 102: 779-788, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28412339

RESUMEN

Microbial amylases are used to produce ethanol, glucose and can be applied in textiles products, detergents and other industries. This study aimed to determine the best carbon source concentration to induce the amylase production by A. japonicus, and its purification and biochemical characterization. For that, this fungus was cultivated in Khanna medium, pH 5.5, for 4 days, at 25°C, in static condition, supplemented with potato starch and maltose in different concentrations. The fungal crude enzymatic extract was purified in a unique elution in DEAE-cellulose column and the molecular mass was determined as 72kDa. The optimum temperature and pH was 65°C and 5.0, respectively. Amylase remained 75% of its activity after one hour at 50°C and was stable in the pH range 3.0-7.0. The analysis of the end-products by thin layer chromatography showed only glucose formation, which characterizes the purified enzyme as a glucoamylase. Amylopectin was the best substrate for the enzyme assay and Mn+2 and Pb+2 were good glucoamylase activators. This activation, in addition to the biochemical characteristics are important results for future biotechnological applications of this glucoamylase in the recycling and deinking process by the paper industries.


Asunto(s)
Aspergillus/enzimología , Glucano 1,4-alfa-Glucosidasa/aislamiento & purificación , Glucano 1,4-alfa-Glucosidasa/metabolismo , Plomo/farmacología , Manganeso/farmacología , Amilosa/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Edético/farmacología , Activación Enzimática/efectos de los fármacos , Glucano 1,4-alfa-Glucosidasa/química , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Maltosa/farmacología , Mercaptoetanol/farmacología , Peso Molecular , Filogenia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...