Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Animals (Basel) ; 14(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38929364

RESUMEN

Hyperthermia elicits several physiological and behavioral responses in livestock to restore thermal neutrality. Among these responses, vasodilation and sweating help to reduce core body temperature by increasing heat dissipation by radiation and evaporation. Thermoregulatory behaviors such as increasing standing time, reducing feed intake, shade-seeking, and limiting locomotor activity also increase heat loss. These mechanisms are elicited by the connection between peripheral thermoreceptors and cerebral centers, such as the preoptic area of the hypothalamus. Considering the importance of this thermoregulatory pathway, this review aims to discuss the hypothalamic control of hyperthermia in livestock, including the main physiological and behavioral changes that animals adopt to maintain their thermal stability.

2.
Animals (Basel) ; 14(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731370

RESUMEN

Most of the responses present in animals when exposed to stressors are mediated by the autonomic nervous system. The sympathetic nervous system, known as the one responsible for the "fight or flight" reaction, triggers cardiovascular changes such as tachycardia or vasomotor alterations to restore homeostasis. Increase in body temperature in stressed animals also activates peripheral compensatory mechanisms such as cutaneous vasodilation to increase heat exchange. Since changes in skin blood flow influence the amount of heat dissipation, infrared thermography is suggested as a tool that can detect said changes. The present review aims to analyze the application of infrared thermography as a method to assess stress-related autonomic activity, and their association with the cardiovascular and heart rate variability in domestic animals.

3.
Animals (Basel) ; 14(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338158

RESUMEN

When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.

4.
Vet Ital ; 59(1): 83-92, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37994640

RESUMEN

The retrovirus bovine leukemia virus (BLV) might produce abnormal immune function, associated with susceptibility to developing other infectious diseases, including mastitis. This study aimed to determine the proviral load and cytokines gene expression in peripheral blood mononuclear cells (PMBC) and milk somatic cells (SC) in BLV-infected and non-infected cattle. Of 27 BLV-infected cows in PBMC, 17 (62.96%) had a high proviral load (HPL), and 10 (37.04%) had a low proviral load (LPL). All SC samples had low proviral load (LPL-SC). Higher IFN-γ and IL-10 expression, and lower IL-12 and IL-6 expression, were found in PBMC from BLV-infected compared to BLV non-infected cattle. Moreover, higher IFN-γ, IL-12, and IL-6 expression, and lower IL-10 expression were observed in cattle with LPL-PBMC compared to HPL-PBMC. In milk samples, lower IFN-γ and higher IL-12 mRNA expression were observed in LPL-SC compared to BLV non-infected cattle in SC. IL-10 and IL-6 expression mRNA was significantly lower in LPL-SC than in SC from BLV non-infected cattle. This study shows that milk SC maintains lower proviral load levels than PBMC. This first report on Th1 and Th2 cytokines expression levels in SC may be relevant to future control strategies for BLV infection, mastitis, and udder health management.


Asunto(s)
Enfermedades de los Bovinos , Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Mastitis , Femenino , Bovinos , Animales , Citocinas/genética , Leucocitos Mononucleares , Interleucina-10 , Virus de la Leucemia Bovina/genética , Leucosis Bovina Enzoótica/genética , Provirus/genética , Leche , Interleucina-6 , Interleucina-12 , ARN Mensajero , Mastitis/veterinaria
5.
Animals (Basel) ; 13(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37443964

RESUMEN

Hypothermia is one of the principal causes of perinatal mortality in water buffaloes and can range from 3% to 17.9%. In ruminants, factors affecting hypothermia in newborns may be of intrinsic (e.g., level of neurodevelopment, birth weight, vitality score, amount of brown fat, skin features) or extrinsic origin (e.g., maternal care, environmental conditions, colostrum consumption). When newborn buffaloes are exposed to cold stress, thermoregulatory mechanisms such as peripheral vasoconstriction and shivering and non-shivering thermogenesis are activated to prevent hypothermia. Due to the properties of infrared thermography (IRT), as a technique that detects vasomotor changes triggered by a reduction in body temperature, evaluating the central and peripheral regions in newborn buffaloes is possible. This review aims to analyze behavioral, physiological, and morphological strategies and colostrum consumption as thermal compensation mechanisms in newborn water buffalo to cope with environmental changes affecting thermoneutrality. In addition, the importance of monitoring by IRT to identify hypothermia states will be highlighted. Going deeper into these topics related to the water buffalo is essential because, in recent years, this species has become more popular and is being bred in more geographic areas.

6.
J Therm Biol ; 114: 103568, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162166

RESUMEN

High temperatures for extended periods, which do not allow animals to recover from heat stress, affect in particular those BLV-infected animals that carry a high proviral load. For this study, animals were discriminated between BLV (+) and BLV (-), and those belonging to the first group, were classified based on their proviral load. The expression of the inflammatory cytokine TNF-α and its receptors, which play an important role in disease progression, were quantified by qPCR in two different seasons. During the summer, average temperature was 19.8 °C, maximums higher than 30 °C were frequent. Instead, during the autumn, the average temperature was 12.63 °C, and temperatures never exceeded 27 °C. During this season, almost no periods of temperatures exceeded the comfort limit. Our results revealed that the expression levels of TNF-α and its receptors were downregulated in animals with high proviral load. This fact could affect their antiviral response and predispose to viral dissemination; over time, animals with a poorer immune system are prone to acquiring opportunistic diseases. Conversely, animals with LPL maintained their expression profile, with behavior comparable to non-infected animals. These findings should be considered by producers and researchers, given the problems that global warming is causing lately to the planet.

7.
Vet Res Commun ; 45(4): 431-439, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34453235

RESUMEN

Bovine leukemia virus (BLV) main host cells are B lymphocytes. Infected animals can be classified into high or low proviral load (HPL or LPL respectively), regarding the number of proviral copies infected lymphocytes they carry. After infection, there is an overexpression of several cytokines, particularly TNF-α, which has a delicate regulation mediated by receptors TNFRI and TNFRII; the first one involved with apoptosis, while the other stimulates cell proliferation. The study aimed to quantify TNF-α and its receptors mRNA expression, and in which extent in vitro proliferation was affected, in peripheral blood mononuclear cells (PBMC) from BLV-infected animals with different proviral loads, after the addition or not of synthetic TNF-α (rTNF-α) for 48 h. PBMC from BLV-infected animals showed spontaneous proliferation after 48 h in culture but did not show changes in proliferation rates after 48 h incubation in the presence of the rTNF-α. TNF-α mRNA expression after 48 h culture without exogenous stimulation was significantly lower, regardless of the proviral load of the donor, compared to non-infected animals. In the LPL animals, the expression of TNF-α mRNA was significantly lower with respect to the control group while the expression of TNFRI mRNA was significantly increased. The HPL animals showed a significant decrease in the expression of TNF-α and TNFRII mRNA respect to the control group. After 48 h incubation with rTNF-α, PBMC from infected animals had different responses: TNF-α and TNFRI mRNA expression was reduced in PBMC from the LPL group compared to the BLV negative group, but no differences were observed in PBMC from the HPL group. TNFRII mRNA expression showed no differences between HPL, LPL, and BLV negative groups, though HPL animals expressed 10.35 times more TNFRI mRNA than LPL. These results support the hypothesis that LPL animals, when faced with viral reactivation, present a pro-apoptotic and anti-proliferative state. However, complementary studies are needed to explain the influence of TNFRII on the development of the HLP profile. On the other hand, exogenous stimulation studies reinforce the hypothesis that BLV infection compromises the immune response of the animals.


Asunto(s)
Leucosis Bovina Enzoótica/inmunología , Virus de la Leucemia Bovina/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Carga Viral , Animales , Bovinos , Proliferación Celular , Citocinas/inmunología , Leucosis Bovina Enzoótica/virología , Expresión Génica , Sistema Inmunológico , Leucocitos Mononucleares/virología , ARN Mensajero/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Vet Immunol Immunopathol ; 235: 110232, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33799007

RESUMEN

Heat stress is one of the environmental factors that most severely affects milk industry, as it has impact on production, immune responses and reproductive performance. The present study was conducted with high-performance Holando-Argentino cows. Our objective was to study TNF-α and its receptors pattern expression in cows from a region characterized by extreme climatic seasonality. Animals were evaluated in three periods: spring (n = 15), summer (n = 14) and autumn (n = 11). Meteorological records from a local station were used to estimate the temperature and humidity index (THI) by means of an equation previously defined. A THI higher than 68 is indicative of stressing conditions. During the summer period, the animals were exposed to 8.5 ±â€¯1.09 h of heat stress, or THI > 68. In spring, stress hours were reduced to 1.4 ±â€¯0.5 every day, while during the autumn, there were no recorded heat stress events. Expression of TNF-α, and its receptors was determined by qPCR. During the summer, TNF-α and its receptors expression diminished drastically compared to the rest of the year, when stressful conditions were infrequent. We conclude that animals that are not physiologically prepared to resist high temperatures might have a less efficient immune response, reinforcing the need to develop new strategies to improve animal welfare.


Asunto(s)
Trastornos de Estrés por Calor/inmunología , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/inmunología , Receptores del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Femenino , Trastornos de Estrés por Calor/genética , Calor , Humedad , Lactancia , Leucocitos Mononucleares/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Estaciones del Año , Factor de Necrosis Tumoral alfa/inmunología
9.
PLoS One ; 15(6): e0234939, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32579585

RESUMEN

Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.


Asunto(s)
Leucosis Bovina Enzoótica/genética , Células Epiteliales/metabolismo , Células Epiteliales/virología , Virus de la Leucemia Bovina/fisiología , Glándulas Mamarias Animales/patología , RNA-Seq , Transcriptoma/genética , Animales , Bovinos , Línea Celular , Análisis por Conglomerados , Femenino , Regulación de la Expresión Génica , Genoma , Análisis de Componente Principal
10.
Virus Res ; 271: 197678, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31381943

RESUMEN

Bovine leukemia virus (BLV) is a retrovirus that infects cattle and is associated with an increase in secondary infections. The objective of this study was to analyze the effect of BLV infection on cell viability, apoptosis and morphology of a bovine mammary epithelial cell line (MAC-T), as well as Toll like receptors (TLR) and cytokine mRNA expression. Our findings show that BLV infection causes late syncytium formation, a decrease in cell viability, downregulation of the anti-apoptotic gene Bcl-2, and an increase in TLR9 mRNA expression. Moreover, we analyzed how this stably infected cell line respond to the exposure to Staphylococcus aureus (S. aureus), a pathogen known to cause chronic mastitis. In the presence of S. aureus, MAC-T BLV cells had decreased viability and decreased Bcl-2 and TLR2 mRNA expression. The results suggest that mammary epithelial cells infected with BLV have altered the apoptotic and immune pathways, probably affecting their response to bacteria and favoring the development of mastitis.


Asunto(s)
Células Epiteliales/virología , Interacciones Huésped-Patógeno , Virus de la Leucemia Bovina/fisiología , Animales , Apoptosis/genética , Biomarcadores , Bovinos , Línea Celular , Proliferación Celular , Supervivencia Celular , Citocinas/metabolismo , Efecto Citopatogénico Viral , Leucosis Bovina Enzoótica/metabolismo , Leucosis Bovina Enzoótica/virología , Células Epiteliales/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/virología , Mastitis Bovina/metabolismo , Mastitis Bovina/virología , Receptores Toll-Like/metabolismo
11.
Vet Immunol Immunopathol ; 206: 41-48, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30502911

RESUMEN

Bovine leukemia virus (BLV) is one of the most important virus in dairy cattle. The infection behavior follows what we call the iceberg phenomenon: 60% of infected animals do not show clinical signs; 30% develop persistent lymphocytosis (PL); and the remaining 10%, die due to lymphosarcoma. BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms by which cattle governs the control of viral dissemination will be desirable for designing effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. It is known that BLV affects cellular homeostasis: proliferation and apoptosis. It is also known that the BLV tropism is directed towards B lymphocytes, and that lymphocytotic animals have elevated amounts of these cells. Usually, when an animal is infected by BLV, the B markers that increase are CD21, CD5 and CD11b. This increase could be related to the modulation of apoptosis in these cells. This is the first work in which animals infected with BLV are classified according to their proviral load and the subpopulations of B and T lymphocytes are evaluated in terms of their percentage in peripheral blood and its stage of apoptosis and viability. PBMCs from HPL animals proliferated more than LPL and non-infected animals. CD11b+/CD5+ lymphocytes in LPL animals presented greater early and late apoptosis than HPL animals and cells of HPL animals had increased viability than LPL animals. Our results confirm that BLV alters the mechanism of apoptosis and proliferation of infected cells.


Asunto(s)
Apoptosis , Leucosis Bovina Enzoótica/inmunología , Virus de la Leucemia Bovina/inmunología , Subgrupos Linfocitarios/inmunología , Carga Viral/veterinaria , Animales , Bovinos , Proliferación Celular , Células Cultivadas , Femenino
12.
Virus Res ; 256: 11-16, 2018 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-30055215

RESUMEN

Bovine leukemia virus (BLV) is a retrovirus that affects cattle causing a lymphoproliferative disease. BLV infection has been associated with misbalance of the immune response causing a higher incidence of other infections. Mastitis is one of the most important conditions that affect milk production in cattle. The aim of this study was to stably infect a bovine mammary epithelial cell line (MAC-T). MAC-T cell line was successfully infected with BLV and the infection was confirmed by nested PCR, qPCR, immunocytochemistry, western blot and transmission electron microscopy. This is the first report of a bovine mammary epithelial cell line stably infected with BLV. This new cell line could be used as an in vitro model to study the effect of BLV on the immune response in the mammary gland and the relationship with other agents causing mastitis.


Asunto(s)
Células Epiteliales/virología , Virus de la Leucemia Bovina/crecimiento & desarrollo , Animales , Western Blotting , Bovinos , Línea Celular , Inmunohistoquímica , Virus de la Leucemia Bovina/genética , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Virales/análisis
13.
J Mammary Gland Biol Neoplasia ; 23(3): 101-107, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29777406

RESUMEN

The incidence of breast cancer is continuously increasing worldwide, as influenced by many factors that act synergistically. In the last decade there was an increasing interest in the possible viral etiology of human breast cancer. Since then, many viruses have been associated with this disease (murine mammary tumor virus, MMTV; Epstein-Barr virus, EBV; and human papillomavirus, HPV). Recently, BLV has been identified in human breast cancers giving rise to the hypothesis that it could be one of the causative agents of this condition. BLV is a retrovirus distributed worldwide that affects cattle, causing lymphosarcoma in a small proportion of infected animals. Because of its similarity with human retroviruses like HTLV and HIV, BLV was assumed to also be involved in tumor emergence. Based on this assumption, studies were focused on the possible role of BLV in human breast cancer development. We present a compilation of the current knowledge on the subject and some prospective analysis that is required to fully end this controversy.


Asunto(s)
Neoplasias de la Mama/etiología , Neoplasias de la Mama/virología , Virus de la Leucemia Bovina/patogenicidad , Animales , Bovinos , Humanos
14.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 54(3): 215-224, 2017. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-879383

RESUMEN

Bovine leukemia virus (BLV) is associated with the most common neoplastic disease of cattle. BLV has a silent dissemination in the herd due to infected cell exchange, thus the concentration of BLV-infected cells in blood should play a major role in the success of viral transmission. Genes from Bovine leukocyte antigen (BoLA), the MHC system of cattle, are associated with genetic resistance and susceptibility to a wide range of diseases, and also with production traits. Some BoLA DRB3.2 allele polymorphisms in Holstein cattle have been associated with resistance or susceptibility to BLV-disease development, or with proviral load (PVL). This investigation studied 107 BLV-infected Argentinean Holstein dairy cows, all of them belonging to one herd. PVL was analysed by qPCR and animals were classified as high proviral load (HPVL, N = 88) and low proviral load (LPVL, N = 19), and BoLA DRB3.2 alleles were genotyped. Alleles BoLA DRB3.2*1501 and *1201 were significantly associated with HPVL (p = 0.0230 and p = 0.0111 respectively), while allele BoLA DRB3.2*0201 was significantly associated with LPVL (p = 0.0030). The present study aims at contributing to the knowledge of the association between BoLA polymorphism and development of a BLV infection profile. Genes that best explain the PVL in this population resulted BoLA DRB3.2*0201 (as a protection factor) and *1501 (as a risk factor). Allelic differences may play an important role in the development of effective immune responses. A better understanding of how BoLA polymorphism contributes to these responses and the establishment of a BLV status is desirable to schedule and evaluate control measures.(AU)


O vírus da leucemia bovina (BLV) está associado à doença neoplásica mais comum do gado bovino. O BLV tem uma disseminação silenciosa no rebanho devido à troca de células infectadas, assim, a concentração de células BLV infectadas no sangue deve desempenhar um papel importante no sucesso da transmissão viral. Os genes do antígeno leucocitário bovino (BoLA), sistema MHC do gado bovino, estão associados à resistência genética e à susceptibilidade a uma ampla gama de doenças, bem como às características da produção. Alguns polimorfismos de alelos de BoLA DRB3.2 em bovinos Holstein têm sido associados à resistência ou susceptibilidade ao desenvolvimento da doença BLV, ou com carga proviral (PVL). Esta investigação avaliou 107 vacas leiteiras da raça Holstein argentina infectadas com BLV e pertencentes a um único rebanho. A PVL foi analisada por qPCR, os animais foram classificados em alta carga proviral (HPVL, N = 88) e baixa carga proviral (LPVL, N = 19), e os alelos BoLA DRB3.2 foram genotipados. Os alelos BoLA DRB3.2*1501 e *1201 estavam significativamente relacionados à HPVL (p = 0,0230 e p = 0,0111, respectivamente), enquanto o alelo BoLA DRB3.2*0201, à LPVL (p = 0,0030). O objetivo deste estudo é contribuir para o conhecimento da associação entre o polimorfismo de BoLA e o desenvolvimento de infecção por BLV. Os genes que melhor explicam a PVL na população analisada resultaram em BoLA DRB3.2*0201 (como fator de proteção) e *1501 (como fator de risco). As diferenças alélicas podem desempenhar um papel importante no desenvolvimento de respostas imunitárias eficazes. Uma melhor compreensão de como o polimorfismo BoLA contribui para estas respostas e o estabelecimento de um estado BLV é desejável para agendar e avaliar as medidas de controle.(AU)


Asunto(s)
Animales , Bovinos , Antígenos , Virus de la Leucemia Bovina/genética , Polimorfismo Genético , Carga Viral/veterinaria
15.
Res Vet Sci ; 107: 190-195, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27473994

RESUMEN

Bovine leukemia virus (BLV) infection is widespread mainly in dairy cattle and 5-10% of infected animals will die due to lymphosarcoma; most cattle remain asymptomatic but 30% develop persistent lymphocytosis (PL). BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms which govern the control of viral dissemination will be desirable for the design of effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. We aimed to characterize cytokines and toll-like receptors (TLR) expression related to the proviral load profiles. IFN-γ and IL-12 mRNA expression level was significantly higher in PBMC from infected cattle (LPL n=6 and HPL n=7) compared to uninfected animals (n=5). While no significant differences were observed in IL-12 expression between LPL and HPL group, IFN-γ expression was significantly higher in LPL animals. Infected cattle exhibited higher expression levels of TLR3, 7-9. Animals with HPL had significantly higher expression of TLR7/8 than uninfected cattle. TLR8 and TLR9 were up-regulated in HPL group, and TLR3 was up-regulated in LPL group. This is the first report related to TLR gene expression in BLV infected cattle and represents evidence of the involvement of these receptors in BLV recognition. Further studies on different subpopulations of immune cells may help clarify their role in response to BLV and its consequences on viral dissemination.


Asunto(s)
Leucosis Bovina Enzoótica/virología , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Virus de la Leucemia Bovina/fisiología , Provirus , Receptores Toll-Like/metabolismo , Animales , Bovinos , Citocinas/genética , Leucosis Bovina Enzoótica/metabolismo , Regulación de la Expresión Génica/fisiología , Interferón gamma/genética , Interleucina-12/genética , Leucocitos Mononucleares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Toll-Like/genética , Carga Viral , Virión/genética
16.
Arch Virol ; 160(8): 2001-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26051703

RESUMEN

Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine involved in the immune response against viral and other infections. Its expression levels are affected by a polymorphism in the promoter region of the gene. Bovine leukemia virus is a retrovirus that infects cattle and develops two different infection profiles in the host. One profile is characterized by a high number of proviral copies integrated into the host genome and a strong immune response against the virus, while the most relevant property of the other profile is that the number of copies integrated into the host genome is almost undetectable and the immune response is very weak. We selected a population of cattle sufficiently large for statistical analysis and classified them according to whether they had a high or low proviral load (HPL or LPL). Polymorphisms in the promoter region were identified by PCR-RFLP. The results indicated that, in the HPL group, the three possible genotypes were normally distributed and that, in the LPL group, there was a significant association between the proviral load and a low frequency of the G/G genotype at position -824.


Asunto(s)
Leucosis Bovina Enzoótica/genética , Virus de la Leucemia Bovina/fisiología , Polimorfismo Genético , Regiones Promotoras Genéticas , Provirus/fisiología , Factor de Necrosis Tumoral alfa/genética , Animales , Bovinos , Leucosis Bovina Enzoótica/metabolismo , Leucosis Bovina Enzoótica/virología , Femenino , Genotipo , Virus de la Leucemia Bovina/genética , Masculino , Provirus/genética , Carga Viral
17.
Arch Virol ; 158(1): 63-70, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22965577

RESUMEN

Bovine leukemia virus (BLV)-infected cattle were classified by their proviral load into low and high proviral load profiles (LPL and HPL, respectively). Blood from these animals was used to infect sheep to obtain multiple identical copies of integrated provirus. An env fragment of BLV was amplified from all infected sheep and sequenced. The sequences that were obtained were compared to already published BLV genome sequence, resulting in three clusters. Mutations could not be attributed to the passage of provirus from cattle to sheep and subsequent amplification and sequencing. The description of two different proviral load profiles, the association of the BoLA-DRB3.2 0902 allele with the LPL profile, the availability of complete BLV sequences, and the comparison of a variable region of the env gene from carefully characterized cattle are still not enough to explain the presence of animals in every herd that are resistant to BLV dissemination.


Asunto(s)
Leucosis Bovina Enzoótica/virología , Virus de la Leucemia Bovina/genética , Provirus/genética , Enfermedades de las Ovejas/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Virus de la Leucemia Bovina/química , Virus de la Leucemia Bovina/clasificación , Virus de la Leucemia Bovina/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Provirus/clasificación , Provirus/aislamiento & purificación , Alineación de Secuencia , Ovinos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
18.
Braz. j. vet. res. anim. sci ; 48(6): 454-463, 2011. tab, ilus
Artículo en Inglés | LILACS | ID: lil-687568

RESUMEN

and from cattle with a variety of clinical signs. The pathogenic role of BoHV-4 remains unclear and it is unknown whether the virus acts as a primary pathogen or whether it facilitates secondary infections After natural or experimental infections, BoHV-4 can establish latency, mainly in cells of the monocyte/macrophage linage. Latent virus can be reactivated after glucocorticoid treatment or by stress factors. In 2007, BoHV-4 was isolated for the first time in Argentina, from samples of bovine abortions. In the present study, we used viral isolation, nested PCR and restriction endonuclease analysis (REA) to investigate the presence of BoHV-4 in bovine leukocytes from a single herd of dairy cattle with reproductive problems. In this work, we demonstrated that BoHV-4 genome is present in the leukocytes of a high proportion (63.4%) of animals, probably in a latent or persistent state. BoHV-4 was isolated from one out of eleven peripheral blood leukocyte (PBL) samples. By REA we demonstrated the existence of genomic variation among the strains circulating in this particular herd. Furthermore, all PBL samples evaluated in this study differed from the American prototype strain, DN 599. Overall, this work demonstrated that BoHV-4 is present in the leukocyte fraction of dairy cattle and that viral strains present in this herd are genetically divergent. Although BoHV-4 was detected in a herd with a background of reproductive disorders, it is not possible to conclude that the virus is the primary responsible for these conditions.


O herpesvírus bovino tipo 4 (BoHV-4) é um gama-herpesvírus que foi isolado de animais aparentemente saudáveis e de gado com uma variedade de sinais clínicos. O papel patogênico do BoHV-4 ainda não está claro e não se sabe se o vírus age como um patógeno primário ou se facilita infecções secundárias. Depois de infecções naturais ou experimentais, BoHV-4 pode estabelecer latência, principalmente nas células dos linhagens de monócitos/macrófagos. O vírus latente pode ser reativado após o uso de glicocorticóides ou por fatores de estresse. Em 2007, o BoHV-4 foi isolado pela primeira vez na Argentina, a partir de amostras de abortos bovinos. No presente estudo, utilizou-se o isolamento viral, nested PCR e análise com endonucleases de restrição (REA) para investigar a presença de BoHV4 em leucócitos de bovinos provenientes de um único rebanho de gado leiteiro com problemas reprodutivos. Neste trabalho, demonstramos que o genoma do BoHV-4 está presente nos leucócitos em uma elevada proporção (63,4%) dos animais, provavelmente em um estado latente ou persistente. BoHV-4 foi isolado de uma de cada onze amostras de leucócitos no sangue periférico (PBL). Por REA nós demonstramos a existência de variações genômicas entre as estirpes circulantes deste rebanho particular. Além disso, todas as amostras de PBL avaliados neste estudo diferiram da estirpe protótipo Americano, DN 599. Em geral, este estudo demonstrou que o BoHV-4 está presente na fração leucocitária do gado leiteiro e que as estirpes virais presentes neste rebanho são geneticamente divergentes. Embora que BoHV-4 foi detectado em um rebanho com história de distúrbios reprodutivos, não é possível concluir que o vírus é o principal responsável por estas condições.


Asunto(s)
Animales , ADN , Genoma , Noxas , Glucocorticoides/administración & dosificación , Infecciones/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA