Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(7): e0200344, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29979789

RESUMEN

It is intriguing that a rare, inherited lysosomal storage disorder Niemann-Pick type C (NPC) shares similarities with Alzheimer's disease (AD). We have previously reported an enhanced processing of ß-amyloid precursor protein (APP) by ß-secretase (BACE1), a key enzyme in the pathogenesis of AD, in NPC1-null cells. In this work, we characterized regional and temporal expression and processing of the recently identified BACE1 substrates seizure protein 6 (Sez6) and seizure 6-like protein (Sez6L), and APP, in NPC1-/- (NPC1) and NPC1+/+ (wt) mouse brains. We analysed 4-weeks old brains to detect the earliest changes associated with NPC, and 10-weeks of age to identify changes at terminal disease stage. Sez6 and Sez6L were selected due to their predominant cleavage by BACE1, and their potential role in synaptic function that may contribute to presentation of seizures and/or motor impairments in NPC patients. While an enhanced BACE1-cleavage of all three substrates was detected in NPC1 vs. wt-mouse brains at 4-weeks of age, at 10-weeks increased proteolysis by BACE1 was observed for Sez6L in the cortex, hippocampus and cerebellum of NPC1-mice. Interestingly, both APP and Sez6L were found to be expressed in Purkinje neurons and their immunostaining was lost upon Purkinje cell neurodegeneration in 10-weeks old NPC1 mice. Furthermore, in NPC1- vs. wt-mouse primary cortical neurons, both Sez6 and Sez6L showed increased punctuate staining within the endolysosomal pathway as well as increased Sez6L and BACE1-positive puncta. This indicates that a trafficking defect within the endolysosomal pathway may play a key role in enhanced BACE1-proteolysis in NPC disease. Overall, our findings suggest that enhanced proteolysis by BACE1 could be a part of NPC disease pathogenesis. Understanding the basic biology of BACE1 and the functional impact of cleavage of its substrates is important to better evaluate the therapeutic potential of BACE1 against AD and, possibly, NPC disease.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas/genética , Proteínas/metabolismo , Proteolisis
2.
PLoS One ; 11(11): e0167428, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27902765

RESUMEN

Proper function of lysosomes is particularly important in neurons, as they cannot dilute accumulated toxic molecules and aggregates by cell division. Thus, impairment of lysosomal function plays an important role in neuronal degeneration and in the pathogenesis of numerous neurodegenerative diseases. In this work we analyzed how inhibition and/or loss of the major lysosomal proteases, the cysteine cathepsins B and L (CtsB/L), affects lysosomal function, cholesterol metabolism and degradation of the key Alzheimer's disease (AD) proteins. Here, we show that cysteine CtsB/L, and not the aspartyl cathepsin D (CtsD), represent a major lysosomal protease(s) that control lysosomal function, intracellular cholesterol trafficking and AD-like amyloidogenic features. Intriguingly, accumulation of free cholesterol in late endosomes/lysosomes upon CtsB/L inhibition resembled a phenotype characteristic for the rare neurodegenerative disorder Niemann-Pick type C (NPC). CtsB/L inhibition and not the inhibition of CtsD led to lysosomal impairment assessed by decreased degradation of EGF receptor, enhanced LysoTracker staining and accumulation of several lysosomal proteins LC3II, NPC1 and NPC2. By measuring the levels of NPC1 and ABCA1, the two major cholesterol efflux proteins, we showed that CtsB/L inhibition or genetic depletion caused accumulation of the NPC1 in lysosomes and downregulation of ABCA1 protein levels and its expression. Furthermore, we revealed that CtsB/L are involved in degradation of the key Alzheimer's proteins: amyloid-ß peptides (Aß) and C-terminal fragments of the amyloid precursor protein (APP) and in degradation of ß-secretase (BACE1). Our results imply CtsB/L as major regulators of lysosomal function and demonstrate that CtsB/L may play an important role in intracellular cholesterol trafficking and in degradation of the key AD proteins. Our findings implicate that enhancing the activity or levels of CtsB/L could provide a promising and a common strategy for maintaining lysosomal function and for preventing and/or treating neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas Amiloidogénicas/metabolismo , Catepsina B/metabolismo , Catepsina L/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Células CHO , Catepsina B/antagonistas & inhibidores , Catepsina L/antagonistas & inhibidores , Línea Celular Tumoral , Cricetulus , Homeostasis , Proteolisis
3.
Chimia (Aarau) ; 68(4): 208-10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24983598

RESUMEN

The cannabinoid receptor type 2 (CB2) has a very low expression level in brain tissue under basal conditions, but it is up-regulated in diverse pathological conditions. Two promising lead structures from the literature, N-((3S,5S,7S)-adamantan-1-yl)-8-methoxy-4-oxo-1-pentyl-1,4-dihydroquinoline-3-carboxamide and 8-butoxy-N-(2-fluoro-2-phenylethyl)-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carboxamide - designated KD2 and KP23, respectively - were evaluated as potential PET ligands for imaging CB2. Both KD2 and KP23 were synthesized and labeled with carbon-11. In vitro autoradiographic studies on rodent spleen tissues showed that [(11)C]KD2 exhibits superior properties. A pilot study using [(11)C]KD2 on human post mortem ALS spinal cord slices indicated high CB2 expression level and specific binding, a very exciting finding if considering the future diagnostic application of CB2 ligands and their utility in therapy monitoring. In vivo blocking studies in rats with [(11)C]KD2 showed also high specific uptake in spleen tissue. Although the protein-bound fraction is relatively high, KD2 or KD2 derivatives could be very useful tools for the non-invasive investigation of CB2 levels under various neuroinflammatory conditions.


Asunto(s)
Adamantano/análogos & derivados , Medios de Contraste/síntesis química , Tomografía de Emisión de Positrones/métodos , Quinolonas/síntesis química , Receptor Cannabinoide CB2/análisis , Adamantano/síntesis química , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Autopsia , Autorradiografía , Encéfalo/metabolismo , Radioisótopos de Carbono , Perros , Humanos , Hígado/metabolismo , Hígado/patología , Células de Riñón Canino Madin Darby , Ratones , Ratas , Receptor Cannabinoide CB2/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Bazo/metabolismo , Bazo/patología , Coloración y Etiquetado
4.
Pharmaceuticals (Basel) ; 7(3): 339-52, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24662272

RESUMEN

Cannabinoid receptor subtype 2 (CB2) has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer's disease. The CB2 receptor is therefore considered as a very promising target for therapeutic approaches as well as for imaging. A promising 2-oxoquinoline derivative designated KP23 was synthesized and radiolabeled and its potential as a ligand for PET imaging the CB2 receptor was evaluated. [11C]KP23 was obtained in 10%-25% radiochemical yield (decay corrected) and 99% radiochemical purity. It showed high stability in phosphate buffer, rat and mouse plasma. In vitro autoradiography of rat and mouse spleen slices, as spleen expresses a high physiological expression of CB2 receptors, demonstrated that [11C]KP23 exhibits specific binding towards CB2. High spleen uptake of [11C]KP23 was observed in dynamic in vivo PET studies with Wistar rats. In conclusion, [11C]KP23 showed promising in vitro and in vivo characteristics. Further evaluation with diseased animal model which has higher CB2 expression levels in the brain is warranted.

5.
Molecules ; 18(7): 8535-49, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23877048

RESUMEN

With the idea of finding a more selective radiotracer for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression by means of positron emission tomography (PET), a novel [¹8F]fluorine radiolabeled pyrimidine with 4-hydroxy-3-(hydroxymethyl)butyl side chain at N-1 (HHB-5-[¹8F]FEP) was prepared and evaluated as a potential PET probe. Unlabeled reference compound, HHB-5-FEP, was synthesized via a five-step reaction sequence starting from 5-(2-acetoxyethyl)-4-methoxypyrimidin-2-one. The radiosynthesis of HHB-[¹8F]-FEP was accomplished by nucleophilic radiofluorination of a tosylate precursor using [¹8F]fluoride-cryptate complex in 45% ± 4 (n = 4) radiochemical yields and high purity (>99%). The biological evaluation indicated the feasibility of using HHB-5-[¹8F]FEP as a PET radiotracer for monitoring HSV1-tk expression in vivo.


Asunto(s)
Herpesvirus Humano 1/enzimología , Tomografía de Emisión de Positrones/métodos , Pirimidinas/química , Timidina Quinasa/aislamiento & purificación , Regulación Viral de la Expresión Génica , Humanos , Timidina Quinasa/química
6.
J Neurochem ; 126(5): 616-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23795580

RESUMEN

The cannabinoid type 2 (CB2) receptor plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease and is therefore a very promising target for therapeutic approaches as well as for imaging. Based on the literature, we identified one 4-oxoquinoline derivative(designated KD2) as the lead structure. It was synthesized, radiolabeled and evaluated as a potential imaging tracer for CB2. [11C]KD2 was obtained in 99% radiochemical purity.Moderate blood­brain barrier (BBB) passage was predicted for KD2 from an in vitro transport assay with P-glycoprotein-transfected Madin Darby canine kidney cells. No efflux of KD2 by P-glycoprotein was detected. In vitro autoradiography of rat and mouse spleen slices demonstrated that [11C]KD2 exhibits high specific binding towards CB2. High spleen uptake of [11C]KD2 was observed in dynamic positron emission tomography(PET) studies with Wistar rats and its specificity was confirmed by displacement study with a selective CB2 agonist, GW405833. A pilot autoradiography study with post-mortem spinal cord slices from amyotrophic lateral sclerosis (ALS)patients with [11C]KD2 suggested the presence of CB2 receptors under disease conditions. Specificity of [11C]KD2 binding could also be demonstrated on these human tissues. In conclusion, [11C]KD2 shows good in vitro and in vivo properties as a potential PET tracer for CB2.


Asunto(s)
Indoles/síntesis química , Morfolinas/síntesis química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Receptor Cannabinoide CB2/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Animales , Autorradiografía , Unión Competitiva/efectos de los fármacos , Proteínas Sanguíneas/metabolismo , Encéfalo/diagnóstico por imagen , Línea Celular , Cromatografía Líquida de Alta Presión , Perros , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Indicadores y Reactivos , Marcaje Isotópico/métodos , Masculino , Ratones , Unión Proteica , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...