Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 933: 173092, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729369

RESUMEN

Environmental DNA metabarcoding is gaining momentum as a time and cost-effective tool for biomonitoring and environmental impact assessment. Yet, its use as a replacement for the conventional marine benthic monitoring based on morphological analysis of macrofauna is still challenging. Here we propose to study the meiofauna, which is much better represented in sediment DNA samples. We focus on nematodes, which are the most numerous and diverse group of meiofauna. Our aim is to assess the potential of nematode metabarcoding to monitor impacts associated with offshore oil platform activities. To achieve this goal, we used nematode-optimized marker (18S V1V2-Nema) and universal eukaryotic marker (18S V9) region to analyse 252 sediment DNA samples collected near three offshore oil platforms in the North Sea. For both markers, we analysed changes in alpha and beta diversity in relation to distance from the platforms and environmental variables. We also defined three impact classes based on selected environmental variables that are associated with oil extraction activities and used random forest classifiers to compare the predictive performance of both datasets. Our results show that alpha- and beta-diversity of nematodes varies with the increasing distance from the platforms. The variables directly related to platform activity, such as Ba and THC, strongly influence the nematode community. The nematode metabarcoding data provide more robust predictive models than eukaryotic data. Furthermore, the nematode community appears more stable in time and space, as illustrated by the overlap of nematode datasets obtained from the same platform three years apart. A significative negative correlation between distance and Shannon diversity also advocates for higher performance of the V1V2-Nema over the V9. Overall, these results suggest that the sensitivity of nematodes is higher compared to the eukaryotic community. Hence, nematode metabarcoding has the potential to become an effective tool for benthic monitoring in marine environment.


Asunto(s)
Código de Barras del ADN Taxonómico , Monitoreo del Ambiente , Nematodos , Animales , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Mar del Norte , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 818: 151783, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801504

RESUMEN

Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.


Asunto(s)
ADN Ambiental , Biodiversidad , ADN/genética , Código de Barras del ADN Taxonómico , Ecosistema , Monitoreo del Ambiente/métodos
3.
Water Res ; 191: 116767, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418487

RESUMEN

Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.


Asunto(s)
Monitoreo Biológico , Ecosistema , Archaea/genética , Biomarcadores Ambientales , Monitoreo del Ambiente , Agua Dulce
4.
Leukemia ; 27(6): 1245-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23318960

RESUMEN

The lens epithelium-derived growth factor (LEDGF/p75) tethers the mixed-lineage leukemia (MLL1) protein complex to chromatin. Likewise, LEDGF/p75 tethers the HIV-1 pre-integration complex to chromatin. We previously demonstrated that expression of the C-terminal fragment fused to enhanced green fluorescent protein (eGFP) (eGFP-LEDGF(325-530)) impaired HIV-1 replication. Here, we explored this strategy to selectively interfere with the leukemogenic activity of MLL-fusion proteins. We found that expression of LEDGF(325-530) impaired the clonogenic growth of MLL-fusion gene transformed human and mouse hematopoietic cells, without affecting the growth of control cells immortalized by the FLT3-ITD mutant or normal lineage-marker-depleted murine bone marrow cells. Expression of LEDGF(325-530) was associated with downregulation of the MLL target Hoxa9 and impaired cell cycle progression. Structure-function analysis revealed two small eGFP-fused LEDGF/p75 peptides, LEDGF(424-435) and LEDGF(375-386) phenocopying these effects. Both LEDGF(325-530) and the smaller active peptides were able to disrupt the LEDGF/p75-MLL interaction. Expression of LEDGF(325-530) or LEDGF(375-386) fragments increased the latency period to disease development in vivo in a mouse bone marrow transplant model of MLL-AF9-induced AML. We conclude that small peptides disrupting the LEDGF/p75-MLL interface have selective anti-leukemic activity providing a direct rationale for the design of small molecule inhibitors targeting this interaction.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Recombinantes de Fusión/genética , Animales , Transformación Celular Neoplásica , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia Experimental/genética , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA