Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 822: 153380, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35077786

RESUMEN

European mountain grasslands are increasingly affected by land-use changes and climate, which have been suggested to exert important controls on grassland carbon (C) and nitrogen (N) pools. However, so far there has been no synthetic study on whether and how land-use changes and climate interactively affect the partitioning of these pools amongst the different grassland compartments. We analyzed the partitioning of C and N pools of 36 European mountain grasslands differing in land-use and climate with respect to above- and belowground phytomass, litter and topsoil (top 23 cm). We found that a reduction of management intensity and the abandonment of hay meadows and pastures increased above-ground phytomass, root mass and litter as well as their respective C and N pools, concurrently decreasing the fractional contribution of the topsoil to the total organic carbon pool. These changes were strongly driven by the cessation of cutting and grazing, a shift in plant functional groups and a related reduction in litter quality. Across all grasslands studied, variation in the impact of land management on the topsoil N pool and C/N-ratio were mainly explained by soil clay content combined with pH. Across the grasslands, below-ground phytomass as well as phytomass- and litter C concentrations were inversely related to the mean annual temperature; furthermore, C/N-ratios of phytomass and litter increased with decreasing mean annual precipitation. Within the topsoil compartment, C concentrations decreased from colder to warmer sites, and increased with increasing precipitation. Climate generally influenced effects of land use on C and N pools mainly through mean annual temperature and less through mean annual precipitation. We conclude that site-specific conditions need to be considered for understanding the effects of land use and of current and future climate changes on grassland C and N pools.


Asunto(s)
Carbono , Nitrógeno , Pradera , Nitrógeno/análisis , Plantas , Suelo/química
2.
Ecosystems ; 11(8): 1352-1367, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20936099

RESUMEN

Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R(s)) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R(s) (R(s(max) )), R(s) at a reference soil temperature (10°C; R(s(10) )) and annual R(s) (estimated for 13 sites) ranged from 1.9 to 15.9 µmol CO(2) m(-2) s(-1), 0.3 to 5.5 µmol CO(2) m(-2) s(-1) and 58 to 1988 g C m(-2) y(-1), respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites R(s(max) ) was closely related to R(s(10) ).Assimilate supply affected R(s) at timescales from daily (but not necessarily diurnal) to annual. Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R(s). Temperature-independent seasonal fluctuations of R(s) of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites R(s(10) ) increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R(s) was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R(s) across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO(2) emissions at various timescales.

3.
Geophys Res Lett ; 35(16)2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24347740

RESUMEN

There is an ongoing discussion about why the net ecosystem CO2 exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m2 m-2. Changes in air/soil temperature and air humidity concurrent with the fraction of diffuse radiation were found to amplify the sensitivity of the investigated temperate mountain grassland ecosystem to diffuse radiation.

4.
J Geophys Res Atmos ; 113(D8)2008 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-24383047

RESUMEN

The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (Reco) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while Reco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

5.
Boundary Layer Meteorol ; 122(2): 397-416, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24465032

RESUMEN

Carbon dioxide, latent and sensible energy fluxes were measured by means of the eddy covariance method above a mountain meadow situated on a steep slope in the Stubai Valley/Austria, based on the hypothesis that, due to the low canopy height, measurements can be made in the shallow equilibrium layer where the wind field exhibits characteristics akin to level terrain. In order to test the validity of this hypothesis and to identify effects of complex terrain in the turbulence measurements, data were subjected to a rigorous testing procedure using a series of quality control measures established for surface layer flows. The resulting high-quality data set comprised 36 % of the original observations, the substantial reduction being mainly due to a change in surface roughness and associated fetch limitations in the wind sector dominating during nighttime and transition periods. The validity of the high-quality data set was further assessed by two independent tests: i) a comparison with the net ecosystem carbon dioxide exchange measured by means of ecosystem chambers and ii) the ability of the eddy covariance measurements to close the energy balance. The net ecosystem CO2 exchange measured by the eddy covariance method agreed reasonably with ecosystem chamber measurements. The assessment of the energy balance closure showed that there was no significant difference in the correspondence between the meadow on the slope and another one situated on flat ground at the bottom of the Stubai Valley, available energy being underestimated by 28 and 29 %, respectively. We thus conclude that, appropriate quality control provided, the eddy covariance measurements made above a mountain meadow on a steep slope are of similar quality as compared to flat terrain.

6.
Oecologia ; 23(2): 141-149, 1976 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28309031

RESUMEN

Measurements of the radiation extinction in a meadow at Baumkirchen (Tyrol) show that the decrease in the photosynthetically active radiation (PhAR: 400-700 nm) is different to that of the total net-radiation in a characteristic way. The photosynthetically active radiation is distributed evenly to all vegetation layers, the "active surface" comprises practically the entire 90 cm high canopy. The total radiation energy (net-radiation) is absorbed and 45% is converted into sensible and latent heat only in a 25 cm wide layer, i.e., between 30 and 55 cm within the canopy. A second "active surface" lies in the lowermost 10 cm of the meadow and at the soil surface where additional 28% of the radiation energy is transformed into heat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...