RESUMEN
Evaluating biodiversity and understanding the processes involved in diversification are noticeable conservation issues in fishes subject to large, sometimes illegal, ornamental trade purposes. Here, the diversity and evolutionary history of the Neotropical dwarf cichlid genus Apistogramma from several South American countries are investigated. Mitochondrial and nuclear markers are used to infer phylogenetic relationships between 31 genetically identified species. The monophyly of Apistogramma is suggested, and Apistogramma species are distributed into four clades, corresponding to three morphological lineages. Divergence times estimated with the Yule process and an uncorrelated lognormal clock dated the Apistogramma origin to the beginning of the Eocene (≈ 50 Myr) suggesting that diversification might be related to marine incursions. Our molecular dating also suggests that the Quaternary glacial cycles coincide with the phases leading to Apistogramma speciation. These past events did not influence diversification rates in the speciose genus Apistogramma, since diversification appeared low and constant through time. Further characterization of processes involved in recent Apistogramma diversity will be necessary.
Asunto(s)
Biodiversidad , Cíclidos/fisiología , Animales , Citocromos b/genética , Complejo IV de Transporte de Electrones/genética , Haplotipos/genética , Funciones de Verosimilitud , Filogenia , Reacción en Cadena de la Polimerasa , América del Sur , Especificidad de la Especie , Factores de TiempoRESUMEN
Trypanosoma cruzi, the causative agent of Chagas disease, is subdivided into six discrete typing units (DTUs; TcI-TcVI) of which TcI is ubiquitous and genetically highly variable. While clonality is the dominant mode of propagation, recombinant events play a significant evolutive role. Recently, foci of wild Triatoma infestans have been described in Bolivia, mainly infected by TcI. Hence, for the first time, we evaluated the level of genetic exchange within TcI natural potentially panmictic populations (single DTU, host, area and sampling time). Seventy-nine TcI stocks from wild T. infestans, belonging to six populations were characterized at eight microsatellite loci. For each population, Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD), and presence of repeated multilocus genotypes (MLG) were analyzed by using a total of seven statistics, to test the null hypothesis of panmixia (H0). For three populations, none of the seven statistics allowed to rejecting H0; for another one the low size did not allow us to conclude, and for the two others the tests have given contradictory results. Interestingly, apparent panmixia was only observed in very restricted areas, and was not observed when grouping populations distant of only two kilometers or more. Nevertheless it is worth stressing that for the statistic tests of "HWE", in order to minimize the type I error (i. e. incorrect rejection of a true H0), we used the Bonferroni correction (BC) known to considerably increase the type II error ( i. e. failure to reject a false H0). For the other tests (LD and MLG), we did not use BC and the risk of type II error in these cases was acceptable. Thus, these results should be considered as a good indicator of the existence of panmixia in wild environment but this must be confirmed on larger samples to reduce the risk of type II error.