Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibodies (Basel) ; 13(1)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38390876

RESUMEN

We designed, produced, and purified a novel IgG1-like, bispecific antibody (bsAb) directed against B-cell maturation antigen (BCMA), expressed by multiple myeloma (MM) cells, and an immune checkpoint inhibitor (ICI), PDL1, expressed in the MM microenvironment. The BCMA×PDL1 bsAb was fully characterized in vitro. BCMA×PDL1 bound specifically and simultaneously, with nM affinity, to both native membrane-bound antigens and to the recombinant soluble antigen fragments, as shown by immunophenotyping analyses and surface plasmon resonance (SPR), respectively. The binding affinity of bsAb for PDL1 and BCMA was similar to each other, but PDL1 affinity was about 10-fold lower in the bsAb compared to parent mAb, probably due to the steric hindrance associated with the more internal anti-PDL1 Fab. The bsAb was also able to functionally block both antigen targets with IC50 in the nM range. The bsAb Fc was functional, inducing human-complement-dependent cytotoxicity as well as ADCC by NK cells in 24 h killing assays. Finally, BCMA×PDL1 was effective in 7-day killing assays with peripheral blood mononuclear cells as effectors, inducing up to 75% of target MM cell line killing at a physiologically attainable, 6 nM, concentration. These data provide the necessary basis for future optimization and in vivo testing of this novel bsAb.

2.
Anal Biochem ; 678: 115282, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572841

RESUMEN

Chronic wounds impose a significant burden on healthcare resources, society and more specifically on patients. Preliminary research showed that as of today, there is not a system that can do a precise monitoring of these wounds so that healthcare systems can manage them with efficiency. The overall aim of our project is to produce a capacitive sensor able to detect a specific molecule in chronic wounds, thus giving information concerning its inflammation state. In this article, we present a system that uses nanoporous Anodic Aluminum Oxide (AAO) grafted with a commercially available anti-MMP9 antibody able to interact with Matrix Metalloproteinase 9, an enzyme that works as an indicator of inflammation. In order to produce a proof-of-concept we chose to compare two methods of functionalization followed by a thorough analysis with biological, electrical and optical testing. This study produced reproducible results for each functionalization method, chemisorption being the best choice for the immobilization of conventional antibodies on AAO-based sensors for a detection of MMP9 in pure and complex conditions. This proof-of-concept and its analysis allowed a better understanding of the needs of the overall project and will be helpful to produce a prototype of smart dressing in the near future.


Asunto(s)
Óxido de Aluminio , Técnicas Biosensibles , Humanos , Técnicas Biosensibles/métodos , Metaloproteinasa 9 de la Matriz , Inmunoensayo , Inflamación
3.
Front Immunol ; 14: 1168444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153618

RESUMEN

The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations. We then screened these bispecific antibodies and compared them with the parental single antibodies and antibody pair combinations. The screen readouts included measuring binding to the cognate receptors (mono and bispecificity), intracellular phosphorylation signaling, cell proliferation, apoptosis and receptor expression, and also immune system engagement assays (antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity). Among the 30 BiXAbs™ tested, we selected 3Patri-1Cetu-Fc, 3Patri-1Matu-Fc and 3Patri-2Trastu-Fc as lead candidates. The in vivo testing of these three highly efficient bispecific antibodies against EGFR and HER2 or HER3 in pre-clinical mouse models of pancreatic cancer showed deep antibody penetration in these dense tumors and robust tumor growth reduction. Application of such semi-rational/semi-empirical approach, which includes various immunological assays to compare pre-selected antibodies and their combinations with bispecific antibodies, represents the first attempt to identify potent bispecific antibodies against ErbB family members in pancreatic cancer.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Pancreáticas , Animales , Ratones , Línea Celular Tumoral , Receptores ErbB/metabolismo , Transducción de Señal , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
4.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048069

RESUMEN

Glypican-3 (GPC3) is an oncofetal antigen that is highly expressed in multiple solid tumors, including hepatocellular carcinoma, and is barely expressed in adult normal tissues except the placenta. NKp46 activation receptor is expressed in all-natural killer (NK) cells, including tumor-infiltrating NK cells. FLEX-NKTM is a platform for the production of tetravalent multifunctional antibody NK cell engagers (NKE). CYT-303 was designed using the FLEX-NK scaffold, incorporating a novel humanized NKp46 binder that does not induce NKp46 internalization and a humanized GPC3 binder that targets the membrane-proximal lobe to mediate NK cell-redirected killing of HCC tumors. CYT-303 shows sub-nanomolar binding affinities to both GPC3 and NKp46. CYT-303 was highly potent and effective in mediating NK cell-redirected cytotoxicity against multiple HCC tumor cell lines and tumor spheroids. More interestingly, it can reverse the dysfunction induced in NK cells following repeated rounds of serial killing of tumors. It also mediated antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity against GPC3-expressing HCC tumors. In vivo, CYT-303 showed no toxicity or cytokine release in cynomolgus monkeys up to the highest dose (60 mg/kg), administered weekly by intravenous infusion for 28 days. These results demonstrate the potential of CYT-303 to be a safe and effective therapy against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Citocinas/metabolismo , Glipicanos , Células Asesinas Naturales , Neoplasias Hepáticas/terapia , Animales
5.
Cytotherapy ; 24(2): 161-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34538717

RESUMEN

BACKGROUND AIMS: The authors describe here a novel therapeutic strategy combining a bispecific antibody (bsAb) with cytokine-induced killer (CIK) cells. METHODS: The authors have designed, produced and purified a novel tetravalent IgG1-like CD20 × CD5 bsAb called BL-01. The bsAb is composed of a fused heavy chain and two free light chains that pair correctly to the heavy chain sequences thanks to complementary mutations in the monoclonal antibody 2 CH1/CL sequences. RESULTS: The authors show that BL-01 can bind specifically to CD20 and CD5 with an affinity of 4-6 nM, demonstrating correct pairing of two light chains to the fused heavy chain. The CD20 × CD5 BL-01 bsAb has a functional human IgG1 Fc and can induce up to 65% complement-dependent cytotoxicity of a CD20+ lymphoma cell line in the presence of human complement, similar to anti-CD20 rituximab. The bsAb also induces significant natural killer cell activation and antibody-dependent cytotoxicity of up to 25% as well as up to 65% phagocytosis by human macrophages in the presence of CD20+ tumor cells. The BL-01 bsAb binds to CD20 and CD5 simultaneously and can redirect CIK cells in vitro to kill CD20+ targets, increasing the cytotoxicity of CIK cells by about 3-fold. The authors finally show that the CD20 × CD5 BL-01 bsAb synergizes with CIK cells in vivo in controlling tumor growth and prolonging survival of nonobese diabetic/severe combined immunodeficiency mice inoculated with a patient-derived, aggressive diffuse large B-cell lymphoma xenograft. CONCLUSIONS: The authors suggest that the efficacy of bsAb in vivo is due to the combined activation of innate immunity by Fc and redirection of CIK cells to kill the tumor target.


Asunto(s)
Anticuerpos Biespecíficos , Células Asesinas Inducidas por Citocinas , Neoplasias , Animales , Anticuerpos Monoclonales , Antígenos CD20 , Humanos , Ratones
6.
J Am Heart Assoc ; 10(19): e016287, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34569248

RESUMEN

Background Atherosclerosis is a complex pathology in which dysfunctional endothelium, activated leucocytes, macrophages, and lipid-laden foam cells are implicated, and in which plaque disruption is driven by many putative actors. This study aimed to identify accurate targetable biomarkers using new in vivo approaches to propose tools for improved diagnosis and treatment. Methods and Results Human scFv (single-chain fragment variable) selected by in vivo phage display in a rabbit model of atherosclerosis was reformatted as scFv fused to the scFv-Fc (single-chain fragment variable fused to the crystallizable fragment of immunoglobulin G format) antibodies. Their reactivity was tested using flow cytometry and immunoassays, and aorta sections from animal models and human carotid and coronary artery specimens. A pool of atherosclerotic proteins from human endarterectomies was co-immunoprecipitated with the selected scFv-Fc followed by mass spectrometry for target identification. Near-infrared fluorescence imaging was performed in Apoe-/- mice after injection of an Alexa Fluor 647-labeled scFv-Fc-2c antibody produced in a baculovirus system with 2 additional cysteine residues (ie, 2c) for future coupling to nano-objects for theranostic applications. One scFv-Fc clone (P3) displayed the highest cross-reactivity against atherosclerotic lesion sections (rabbit, mouse, and human) and was chosen for translational development. Mass spectrometry identified galectin-3, a ß-galactoside-binding lectin, as the leader target. ELISA and immunofluorescence assays with a commercial anti-galectin-3 antibody confirmed this specificity. P3 scFv-Fc-2c specifically targeted atherosclerotic plaques in the Apoe-/- mouse model. Conclusions These results provide evidence that the P3 antibody holds great promise for molecular imaging of atherosclerosis and other inflammatory pathologies involving macrophages. Recently, galectin-3 was proposed as a high-value biomarker for the assessment of coronary and carotid atherosclerosis.


Asunto(s)
Aterosclerosis , Bacteriófagos , Placa Aterosclerótica , Anticuerpos de Cadena Única , Animales , Apolipoproteínas E , Aterosclerosis/diagnóstico , Aterosclerosis/genética , Biomarcadores , Galectina 3/genética , Humanos , Ratones , Conejos , Anticuerpos de Cadena Única/genética
7.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068875

RESUMEN

Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a "theranostic approach" that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe-/- mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.


Asunto(s)
Aterosclerosis/patología , Emulsiones , Nanopartículas de Magnetita/administración & dosificación , Imagen Molecular/métodos , Anticuerpos de Cadena Única/inmunología , Nanomedicina Teranóstica/métodos , Animales , Aterosclerosis/inmunología , Medios de Contraste , Femenino , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Polietilenglicoles
8.
Int J Oncol ; 59(1)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34013359

RESUMEN

Anti­Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor­like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434­AMHRII, SKOV3­AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434­AMHRII and SKOV3­AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3­AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1­like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434­AMHRII tumor cell xenograft growth was significantly reduced in all BsAb­treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4­3D7; P=0.001 for all other BsAbs). However, the growth of COV434­AMHRII tumor cell xenografts was slower in mice treated with the anti­AMRII­ALK2 BsAb 12G4­2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti­AMHRII/anti­AMHRI BsAbs.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Hormona Antimülleriana/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptores de Activinas Tipo I/inmunología , Animales , Hormona Antimülleriana/genética , Hormona Antimülleriana/farmacología , Anticuerpos Biespecíficos/farmacología , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/inmunología , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Fosforilación , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Viruses ; 12(1)2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906433

RESUMEN

Many steps in the baculovirus life cycle, from initial ingestion to the subsequent infection of all larval cells, remain largely unknown; primarily because it has hitherto not been possible to follow individual genomes and their lineages. Use of ANCHORTM technology allows a high intensity fluorescent labelling of DNA. When applied to a virus genome, it is possible to follow individual particles, and the overall course of infection. This technology has been adapted to enable labelling of the baculovirus Autographa californica Multiple NucleoPolyhedroVirus genome, as a first step to its application to other baculoviruses. AcMNPV was modified by inserting the two components of ANCHORTM: a specific DNA-binding protein fused to a fluorescent reporter, and the corresponding DNA recognition sequence. The resulting modified virus was stable, infectious, and replicated correctly in Spodoptera frugiperda 9 (Sf9) cells and in vivo. Both budded viruses and occlusion bodies were clearly distinguishable, and infecting cells or larvae allowed the infection process to be monitored in living cells or tissues. The level of fluorescence in the culture medium of infected cells in vitro showed a good correlation with the number of infectious budded viruses. A cassette that can be used in other baculoviruses has been designed. Altogether our results introduce for the first time the generation of autofluorescent baculovirus and their application to follow infection dynamics directly in living cells or tissues.


Asunto(s)
ADN Viral/metabolismo , Nucleopoliedrovirus/fisiología , Replicación Viral , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fluorometría , Genoma Viral/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva/virología , Microscopía Fluorescente , Células Sf9 , Spodoptera
10.
MAbs ; 11(3): 593-605, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30604643

RESUMEN

Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD/inmunología , Antineoplásicos Inmunológicos , Leucemia Eritroblástica Aguda , Receptores de Transferrina/inmunología , Anticuerpos de Cadena Única , Animales , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/farmacología , Células CHO , Cricetulus , Células HEK293 , Humanos , Leucemia Eritroblástica Aguda/tratamiento farmacológico , Leucemia Eritroblástica Aguda/inmunología , Leucemia Eritroblástica Aguda/patología , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Ratones , Ratones Noqueados , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología
11.
Sci Rep ; 8(1): 15016, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30302027

RESUMEN

Atherosclerosis is a chronic, progressive inflammatory disease that may develop into vulnerable lesions leading to thrombosis. This pathology is characterized by the deposition of lipids within the arterial wall and infiltration of immune cells leading to amplification of inflammation. Nowadays there is a rising interest to assess directly the molecular and cellular components that underlie the clinical condition of stroke and myocardial infarction. Single chain fragment variable (scFv)-phages issuing from a human combinatorial library were selected on the lesions induced in a rabbit model of atherosclerosis after three rounds of in vivo phage display. We further implemented a high-throughput flow cytometry method on rabbit protein extracts to individually test one thousand of scFv-phages. Two hundred and nine clones were retrieved on the basis of their specificity for atherosclerotic proteins. Immunohistochemistry assays confirmed the robustness of the designed cytometry protocol. Sequencing of candidates demonstrated their high diversity in VH and VL germline usage. The large number of candidates and their diversity open the way in the discovery of new biomarkers. Here, we successfully showed the capacity of combining in vivo phage display and high-throughput cytometry strategies to give new insights in in vivo targetable up-regulated biomarkers in atherosclerosis.


Asunto(s)
Aterosclerosis/inmunología , Técnicas de Visualización de Superficie Celular , Citometría de Flujo , Anticuerpos de Cadena Única/aislamiento & purificación , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Aterosclerosis/genética , Aterosclerosis/patología , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica/métodos , Conejos , Anticuerpos de Cadena Única/inmunología
12.
Data Brief ; 15: 824-827, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29159220

RESUMEN

This article present data related to the publication entitled "Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging" (Prévot et al., 2017) [1]. Herein we describe the engineering in the baculovirus-insect cell system and purification processes of the human scFv-Fc TEG4-2C antibody, specific of platelets within the atheroma plaque. For molecular targeting purpose, atheroma specific antibody was conjugated to nanoemulsions (NEs) using a heterobifunctional linker (DSPE-PEG-maleimide). Atheroma labelling was assayed by immunochemistry on arterial sections from rabbits.

13.
Int J Pharm ; 532(2): 669-676, 2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-28899764

RESUMEN

PURPOSE: For early atherosclerosis imaging, magnetic oil-in-water nanoemulsion (NE) decorated with atheroma specific monoclonal antibody was designed for Magnetic Particle Imaging (MPI) and Magnetic Resonance Imaging (MRI). MPI is an emerging technique based on direct mapping of superparamagnetic nanoparticles which may advantageously complement MRI. METHODS: NE oily droplets were loaded with superparamagnetic iron oxide nanoparticles of 7, 11 and 18nm and biofunctionalized with atheroma specific scFv-Fc TEG4-2C antibody. RESULTS: Inclusion of nanoparticles inside NE did not change the hydrodynamic diameter of the oil droplets, close to 180nm, nor the polydispersity. The droplets were negatively charged (ζ=-30mV). In vitro MPI signal was assessed by Magnetic Particle Spectroscopy (MPS). NE displayed MRI and MPS signals confirming its potential as new contrast agent. NE MPS signal increase with NPs size close to the gold standard (Resovist). In MRI, NE displayed R2* transversal relaxivity of 45.45, 96.04 and 218.81mM-1s-1 for 7, 11 and 18nm respectively. NE selectively bind atheroma plaque both in vitro and ex vivo in animal models of atherosclerosis. CONCLUSION: Magnetic NE showed reasonable MRI/MPS signals and a significant labelling of the atheroma plaque. These preliminary results support that NE platform could selectively image atherosclerosis.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Compuestos Férricos/administración & dosificación , Placa Aterosclerótica/diagnóstico por imagen , Anticuerpos de Cadena Única/administración & dosificación , Animales , Apolipoproteínas E/genética , Aterosclerosis/inmunología , Medios de Contraste/química , Diglicéridos/administración & dosificación , Diglicéridos/química , Emulsiones , Femenino , Compuestos Férricos/química , Humanos , Fenómenos Magnéticos , Imagen por Resonancia Magnética , Ratones Noqueados , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Placa Aterosclerótica/inmunología , Conejos , Anticuerpos de Cadena Única/química , Agua/administración & dosificación , Agua/química
14.
Angew Chem Int Ed Engl ; 55(47): 14774-14777, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27774736

RESUMEN

Improving therapeutics delivery in enzyme replacement therapy (ERT) for lysosomal storage disorders is a challenge. Herein, we present the synthesis of novel analogues of mannose 6-phosphate (M6P), known as AMFAs and functionalized at the anomeric position for enzyme grafting. AMFAs are non-phosphate serum-resistant derivatives that efficiently bind the cation-independent mannose 6-phosphate receptor (CI-M6PR), which is the main pathway to address enzymes to lysosomes. One of the AMFAs was used to improve the treatment of the lysosomal myopathy Pompe disease, in which acid α-glucosidase (GAA) is defective. AMFA grafting on a M6P-free recombinant GAA led to a higher uptake of the GAA in adult Pompe fibroblasts in culture as compared to Myozyme, the M6P recombinant GAA. Moreover, the treatment of Pompe adult mice with the AMFA-grafted recombinant enzyme led to a remarkable improvement, even at low doses, in muscle functionality and regeneration, whereas Myozyme had limited efficacy.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Lisosomas/enzimología , Manosafosfatos/farmacología , alfa-Glucosidasas/metabolismo , Animales , Conformación de Carbohidratos , Diseño de Fármacos , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Humanos , Lisosomas/metabolismo , Manosafosfatos/síntesis química , Manosafosfatos/química , Ratones
15.
J Immunol ; 196(7): 3199-211, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26921308

RESUMEN

We have designed and validated a novel generic platform for production of tetravalent IgG1-like chimeric bispecific Abs. The VH-CH1-hinge domains of mAb2 are fused through a peptidic linker to the N terminus of mAb1 H chain, and paired mutations at the CH1-CL interface mAb1 are introduced that force the correct pairing of the two different free L chains. Two different sets of these CH1-CL interface mutations, called CR3 and MUT4, were designed and tested, and prototypic bispecific Abs directed against CD5 and HLA-DR were produced (CD5xDR). Two different hinge sequences between mAb1 and mAb2 were also tested in the CD5xDR-CR3 or -MUT4 background, leading to bispecific Ab (BsAbs) with a more rigid or flexible structure. All four Abs produced bound with good specificity and affinity to CD5 and HLA-DR present either on the same target or on different cells. Indeed, the BsAbs were able to efficiently redirect killing of HLA-DR(+) leukemic cells by human CD5(+) cytokine-induced killer T cells. Finally, all BsAbs had a functional Fc, as shown by their capacity to activate human complement and NK cells and to mediate phagocytosis. CD5xDR-CR3 was chosen as the best format because it had overall the highest functional activity and was very stable in vitro in both neutral buffer and in serum. In vivo, CD5xDR-CR3 was shown to have significant therapeutic activity in a xenograft model of human leukemia.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Biespecíficos/genética , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/aislamiento & purificación , Antígenos/inmunología , Baculoviridae/genética , Línea Celular , Diseño de Fármacos , Expresión Génica , Vectores Genéticos/genética , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica/inmunología , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Resonancia por Plasmón de Superficie
16.
Nanomedicine ; 11(4): 927-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25684334

RESUMEN

Atherosclerosis is an inflammatory disease associated with the formation of atheroma plaques likely to rupture in which platelets are involved both in atherogenesis and atherothrombosis. The rupture is linked to the molecular composition of vulnerable plaques, causing acute cardiovascular events. In this study we propose an original targeted contrast agent for molecular imaging of atherosclerosis. Versatile USPIO (VUSPIO) nanoparticles, enhancing contrast in MR imaging, were functionalised with a recombinant human IgG4 antibody, rIgG4 TEG4, targeting human activated platelets. The maintenance of immunoreactivity of the targeted VUSPIO against platelets was confirmed in vitro by flow cytometry, transmission electronic and optical microscopy. In the atherosclerotic ApoE(-/-) mouse model, high-resolution ex vivo MRI demonstrated the selective binding of TEG4-VUSPIO on atheroma plaques. It is noteworthy that the rationale for targeting platelets within atherosclerotic lesions is highlighted by our targeted contrast agent using a human anti-αIIbß3 antibody as a targeting moiety. FROM THE CLINICAL EDITOR: Current clinical assessment of atherosclerotic plagues is suboptimal. The authors in the article designed functionalized superparamagnetic iron oxide nanoparticles with TEG4, a recombinant human antibody, to target activated platelets. By using MRI, these nanoparticles can be utilized to study the process of atheroma pathogenesis.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Plaquetas , Medios de Contraste/farmacología , Imagen Molecular/métodos , Nanopartículas/química , Placa Aterosclerótica/patología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Animales , Anticuerpos Monoclonales/química , Medios de Contraste/química , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Placa Aterosclerótica/metabolismo
17.
PLoS One ; 9(10): e110422, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333276

RESUMEN

The core alpha1,6-fucosyltransferase (FUT8) catalyzes the transfer of a fucosyl moiety from GDP-fucose to the innermost asparagine-linked N-acetylglucosamine residue of glycoproteins. In mammals, this glycosylation has an important function in many fundamental biological processes and although no essential role has been demonstrated yet in all animals, FUT8 amino acid (aa) sequence and FUT8 activity are very well conserved throughout the animal kingdom. We have cloned the cDNA and the complete gene encoding the FUT8 in the Sf9 (Spodoptera frugiperda) lepidopteran cell line. As in most animal genomes, fut8 is a single-copy gene organized in different exons. The open reading frame contains 12 exons, a characteristic that seems to be shared by all lepidopteran fut8 genes. We chose to study the gene structure as a way to characterize the evolutionary relationships of the fut8 genes in metazoans. Analysis of the intron-exon organization in 56 fut8 orthologs allowed us to propose a model for fut8 evolution in metazoans. The presence of a highly variable number of exons in metazoan fut8 genes suggests a complex evolutionary history with many intron gain and loss events, particularly in arthropods, but not in chordata. Moreover, despite the high conservation of lepidoptera FUT8 sequences also in vertebrates and hymenoptera, the exon-intron organization of hymenoptera fut8 genes is order-specific with no shared exons. This feature suggests that the observed intron losses and gains may be linked to evolutionary innovations, such as the appearance of new orders.


Asunto(s)
Evolución Biológica , Fucosiltransferasas/genética , Proteínas de Insectos/genética , Animales , Secuencia de Bases , Clonación Molecular , Exones , Fucosiltransferasas/clasificación , Fucosiltransferasas/metabolismo , Genoma , Proteínas de Insectos/clasificación , Proteínas de Insectos/metabolismo , Insectos/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera/genética
18.
PLoS One ; 8(11): e78834, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223853

RESUMEN

A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus de Insectos/genética , Nucleopoliedrovirus/genética , Proteínas Estructurales Virales/genética , Animales , Eliminación de Gen , Genoma Viral/genética , Genotipo , Interacciones Huésped-Patógeno , Cuerpos de Inclusión Viral/genética , Virus de Insectos/patogenicidad , Virus de Insectos/fisiología , Larva/virología , Nucleopoliedrovirus/patogenicidad , Nucleopoliedrovirus/fisiología , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Sf9 , Spodoptera/virología , Transcripción Genética , Proteínas Virales/genética , Virulencia/genética , Replicación Viral/genética
19.
Methods Mol Biol ; 988: 59-77, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23475714

RESUMEN

Nowadays, recombinant proteins are used with great success for the treatment of a variety of medical conditions, such as cancer, autoimmune, and infectious diseases. Several expression systems have been developed to produce human proteins, but one of their most critical limitations is the addition of truncated or nonhuman glycans to the recombinant molecules. The presence of such glycans can be deleterious as they may alter the protein physicochemical properties (e.g., solubility, aggregation), its half-life, and its immunogenicity due to the unmasking of epitopes.The baculovirus expression system has long been used to produce recombinant proteins for research. Thanks to recent methodological advances, this cost-effective technology is now considered a very promising alternative for the production of recombinant therapeutics, especially vaccines. Studies on the lepidopteran cell metabolism have shown that these cells can perform most of the posttranslational modifications, including N- and O-glycosylation. However, these glycan structures are shorter compared to those present in mammalian proteins. Lepidopteran N-glycans are essentially of the oligomannose and paucimannose type with no complex glycan identified in both infected and uninfected cells. The presence of short N-glycan structures is explained by the low level of N-acetylglucosaminyltransferase I (GNT-I) activity and the absence of several other glycosyltransferases, such as GNT-II and ß1,4-galactosyltransferase I (ß1,4GalTI), and of sialyltransferases.In this chapter, we show that the glycosylation pathway of a lepidopteran cell line can be modified via infection with an engineered baculovirus to "humanize" the glycosylation pattern of a recombinant protein. This engineering has been performed by introducing in the baculovirus genome the cDNAs that encode three mammalian glycosyltransferases (GNT-I, GNT-II, and ß1,4GalTI). The efficiency of this approach is illustrated with the construction of a recombinant virus that can produce a galactosylated antibody.


Asunto(s)
Baculoviridae/genética , Ingeniería Genética/métodos , Genoma Viral , Procesamiento Proteico-Postraduccional , Animales , Secuencia de Carbohidratos , Células Cultivadas , Clonación Molecular , Galactosa/metabolismo , Glicosilación , Glicosiltransferasas/biosíntesis , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes/biosíntesis , Células Sf9 , Spodoptera , Coloración y Etiquetado , Transfección , Cultivo de Virus
20.
MAbs ; 4(3): 294-309, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22531440

RESUMEN

Monoclonal antibodies are used with great success in many different therapeutic domains. In order to satisfy the growing demand and to lower the production cost of these molecules, many alternative systems have been explored. Among them, the baculovirus/insect cells system is a good candidate. This system is very safe, given that the baculoviruses have a highly restricted host range and they are not pathogenic to vertebrates or plants. But the major asset is the speed with which it is possible to obtain very stable recombinant viruses capable of producing fully active proteins whose glycosylation pattern can be modulated to make it similar to the human one. These features could ultimately make the difference by enabling the production of antibodies with very low costs. However, efforts are still needed, in particular to increase production rates and thus make this system commercially viable for the production of these therapeutic agents.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Lepidópteros/citología , Proteínas Recombinantes/biosíntesis , Animales , Baculoviridae , Análisis Costo-Beneficio , Técnicas de Transferencia de Gen , Glicosilación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...